Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Metal organic framework/Polyelectrolyte composites for water vapor sorption applications

Tatsiana Shutava^{1†*}, Christian Jansen^{2†}, Kanstantsin Livanovich¹, Vladimir Pankov³, Christoph Janiak^{2*}

¹Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna St., Minsk 220141, Belarus

²Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany

³ Belarusian State University, 4 Nezavisimosti Av., Minsk 220030, Belarus

E-mails:

shutova@ichnm.by, christian.jansen@hhu.de, kslivonovich@ichnm.by, pankov@bsu.by, janiak@hhu.de

[†] Both authors contributed equally.

Fig. S1. Structure of the used polyelectrolytes :.poly(diallyldimethylammonium chloride) (PDDA), polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), and chitosan (CH), polyacrylic (PAA), carboxymethyl cellulose (CMC), polystyrene sulfonic acid sodium salt (PSS), dextran sulfate (DexS).

MOF	MIL-101(Cr)	Basolite®A520:	MIL-53 (Al)-	UiO-66	Zr fumarate
		Al fumarate	TDC		(MIL-801)
Metal	Cr	Al	Al	Zr	Zr
ion					
Ligand	1,4-benzene	Fumaric acid	2,5-thiophene	1,4-benzene	Fumaric acid
	dicarboxylic		dicarboxylic	dicarboxylic	
	(terephthalic)		acid (TDC)	(terephthalic) acid	
	acid				
Pore structure					

Table S2. Structure of used MOFs

Fig. S3. SEM images of the neat MOFs: MIL-101(Cr) (a), Al-fum (b), Basolite® A520 (c), MIL-53-TDC (d), UiO-66 (e), Zr-fum (fe).

Fig. S4. SEM images of MOF MIL-53-TDC modified with PE: PAA (a), CMC (b), DexS (c), CAR (d).

Fig. S5. Hydrodynamic diameter (d_N) (a) and polydispersity index (PDI) (b) of MOF powders coated with a single polyelectrolyte layer or a LbL shell as indicated on the X-axis, determined by DLS in a water dispersion.

Fig. S6. SEM microphotographs of Al fumarate modified with a LbL shell: PSS (a), (PSS/CH-DEX)₃ (b), (PSS/CH-PEG)₃ (c).

Fig. S7. SEM images of MOF Basolite[®] A520 modified with a LbL shell of PSS/PDDA (a,b), CMC/PEI (c,d), PAA/PDDA (e,f), PAA/PEI (g,h).

e

200 µm

f

Fig. S9. PXRDs of the pristine MOF powders (a -experiment, b - calculated), MOF/PE, and MOF/LbL composites (c-j).

Fig. S10. Total pore volume (a), micropore volume (b), and external surface area (c) of the MOFs after single polyelectrolyte modification as evaluated by nitrogen sorption.

Fig. S11. Isotherms of water vapor sorption by MOF/PE and MOF/LbL composites: a) Al-fum, b), Basolite®A520, c) UiO-66, d) Zr-fum.

F ig. S12. Changes of F_t (a) and R_t (b) of a 5 MHz resonator with Al-fum/(PSS/PDDA)₃ deposit in the process of alternately changing humidity. T = 25.4 °C.

Fig. S13. Water uptake by Al-Fum at 26.4 ^oC.

Fig. S14. Water vapor uptake by Al fumarate and Al fumarate / thick (PSS/PDDA)₂ shell composite (23 °C, RH 70%).