## MOF Supported Crystalline Ionic Liquid: New Type of Solid Electrolyte for Enhanced and High Ionic Conductivity

Li Feng<sup>a</sup>, Guo-Qiang Li<sup>a</sup>, Yu-Kun Li<sup>a</sup>, Xiao-Ling Gu<sup>a</sup>, Si-Yuan Hu<sup>a</sup>, Yu-Chen Han<sup>a</sup>,

Yi-Fan Wang<sup>a</sup>, Ji-Ci Zheng<sup>a</sup>, Yu-Heng Deng<sup>a</sup>, Chong-Qing Wan<sup>\*a,b</sup>

<sup>a</sup>Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of

Chemistry, Capital Normal University, Beijing 100048 (China.).

<sup>b</sup>Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry

of Education), Department of Chemistry, Tsinghua University, Beijing 100084

(China)

E-mail: wancq@cnu.edu.cn



**Figure S1.** Illustration of preparation of EN-1@UiO-67-MIMS and EN-2.3@UiO-67. Photographs of right are as-made ionic liquids EN-1 and EN-2.3. Components of which are shown in Table 1.



Figure S2. FT-IR curves of UiO-67, UiO-67-MIMS, EN-1 and EN-1@UiO-67-MIMS (a) and its magnify show within 500 cm<sup>-1</sup>  $\sim$  2000 cm<sup>-1</sup> range (b).



Figure S4. <sup>1</sup>H-NMR spectrum of EIMS.



Figure S5. SEM images of (a) UiO-67-MIMS, (b) EN-1@UiO-67-MIMS, (c) UiO-67 and (d) EN-

2.3@UiO-67.



Figure S6. TG curves of UiO-67-MIMS, EN-1@UiO-67-MIMS and EN-2.3@UiO-67.



Figure S7. Nyquist plots of EN-1@UiO-67-MIMS after soaked in water.



Figure S8. Nyquist plots of EN-1@UiO-67-MIMS under 150 °C for several days.



Figure S9. Nyquist plots of EN-1 under different temperatures.



Figure S10. Nyquist plots of EN-2.3 under different temperatures.

|      | Composites (IL/Salt@MOF)                                                                             | T/°C | $\sigma \ / \ S \ cm^{-1}$ | Ref.      |
|------|------------------------------------------------------------------------------------------------------|------|----------------------------|-----------|
| IL   | [Na <sub>0.06</sub> Emim <sub>0.94</sub> ][BF <sub>4</sub> ]@MIL-101-SO <sub>3</sub> Na              | 150  | $1.32 \times 10^{-2}$      | 1         |
|      | [Na <sub>0.03</sub> Emim <sub>0.97</sub> ][NTf <sub>2</sub> ]@MIL-101-SO <sub>3</sub> Na             | 150  | $8.66 \times 10^{-3}$      | 1         |
|      | [Na <sub>0.04</sub> Bmim <sub>0.96</sub> ][NTf <sub>2</sub> ]@MIL-101-SO <sub>3</sub> Na             | 150  | $1.75 \times 10^{-3}$      | 1         |
|      | [Na <sub>0.07</sub> C <sub>4</sub> Py <sub>0.93</sub> ][BF <sub>4</sub> ]@MIL-101-SO <sub>3</sub> Na | 150  | $1.31 \times 10^{-3}$      | 1         |
|      | [Na <sub>0.05</sub> Bmim <sub>0.95</sub> ][PF <sub>6</sub> ]@MIL-101-SO <sub>3</sub> Na              | 150  | $1.10 \times 10^{-4}$      | 1         |
|      | [Li <sub>0.2</sub> Emim <sub>0.8</sub> ][NTf <sub>2</sub> ] @ZIF-8                                   | 22   | $4.40 \times 10^{-6}$      | 2         |
|      | [Li <sub>0.2</sub> Emim <sub>0.8</sub> ][NTf <sub>2</sub> ] @MOF-525(Cu)                             | 30   | $3.00 \times 10^{-6}$      | 3         |
|      |                                                                                                      | 100  | $4.90 \times 10^{-3}$      | 3         |
|      | [Li <sub>0.17</sub> Emim <sub>0.83</sub> ][NTf <sub>2</sub> ] @UiO-67(Cr)                            | 25   | $1.00 \times 10^{-4}$      | 4         |
| Salt | 0.35LiOiPr·0.25LiBF4·EC·DEC@MgMOF-74                                                                 | 27   | $3.10 \times 10^{-4}$      | 5         |
|      | LiOtBu@UiO-66                                                                                        | 35   | $1.80 \times 10^{-5}$      | 6         |
|      | (Na0.1EMIM0.9)TFSI@ZIF-8                                                                             | 25   | $2 \times 10^{-4}$         | 7         |
|      | PLM@LE                                                                                               | 20   | $6.6 \times 10^{-4}$       | 8         |
|      | MIL-121/Na+SE                                                                                        | 30   | $1.2 \times 10^{-4}$       | 9         |
| IL   | EN-2.3@UiO-67                                                                                        | 150  | $2.95 	imes 10^{-4}$       | This work |
|      | EN-1@UiO-67-MIMS                                                                                     | 150  | $1.02 \times 10^{-2}$      | This work |

**Table S1.** Comparison of ionic conductivities of EN-2.3@UiO-67 and EN-1@UiO-67-MIMS with representative conductors based on MOF matrix blended with IL or slat of Na<sup>+</sup>.

**Table S2.** BET, pore volume, pore size of UiO-67, UiO-67-MIMS, EN-1@UiO-67-MIMS and EN-2.3@ UiO-67.

| Sample           | BET       | Pore volume        | Pore size |
|------------------|-----------|--------------------|-----------|
|                  | $(m^2/g)$ | cm <sup>3</sup> /g | (Å)       |
| UiO-67           | 2214.28   | 0.92               | ~12       |
| UiO-67-MIMS      | 300.33    | 0.43               | ~6/~12    |
| EN-1@UiO-67-MIMS | 1.64      | 0.01               | ignorable |
| EN-2.3@UiO-67    | 19.66     | 0.03               | ignorable |

Table S3 Conductivities of EN-1@UiO-67-MIMS, EN-2.3@UiO-67, EN-1and EN-2.3 at 150° and room temperature.

|      | EN-1(S cm <sup>-1</sup> ) | EN-2.3(S cm <sup>-1</sup> ) | EN-1@UiO-MIMS(S cm <sup>-1</sup> ) | EN-2.3@UiO-67(S       |  |
|------|---------------------------|-----------------------------|------------------------------------|-----------------------|--|
|      |                           |                             |                                    | cm <sup>-1</sup> )    |  |
| 30°C | $2.09 \times 10^{-6}$     | $2.38 \times 10^{-6}$       | $1.24 \times 10^{-4}$              | $2.78 \times 10^{-7}$ |  |
| 150  | $5.07 \times 10^{-3}$     | $1.92 \times 10^{-3}$       | $1.02 \times 10^{-2}$              | $2.95 \times 10^{-4}$ |  |
| °C   |                           |                             |                                    |                       |  |

**Table S4.** Ionic conductivities of EN-1@UiO-67-MIMS and at 150°C for different days, and the retention test of EN-1@UiO-67-MIMS and EN-2.3@UiO-67 soaked in water.

| Materials                                   | Ionic conductivity ( $\sigma$ / S cm <sup>-1</sup> ) |
|---------------------------------------------|------------------------------------------------------|
| EN-1@UiO-67-MIMS heated for 0days           | $1.02 \times 10^{-2}$                                |
| EN-1@UiO-67-MIMS heated for 10days          | $1.01 \times 10^{-2}$                                |
| EN-1@UiO-67-MIMS heated for 20days          | $1.00 \times 10^{-2}$                                |
| EN-1@UiO-67-MIMS heated for 30days          | $0.98 \times 10^{-2}$                                |
| UiO-67                                      | $5.91 	imes 10^{-8}$                                 |
| UiO-67-MIMS                                 | $4.80 	imes 10^{-8}$                                 |
| EN-1@UiO-67-MIMS soaked in water for 30 min | $2.30 \times 10^{-5}$                                |
| EN-2.3@UiO-67 soaked in water for 30 min    | $6.90 	imes 10^{-8}$                                 |

## Reference

1. Qiuxia Xu, F. Y., Xiangping Zhang, Jian-Rong Li, Jian-Feng Chen, Suojiang Zhang, Combining ionic liquids and sodium salts into metal-organic framework for high-performance sodium-ion conduction. *Industrial and Engineering chemistry* **2019**, *7* (1), 183-190.

2. Fujie, K.; Ikeda, R.; Otsubo, K.; Yamada, T.; Kitagawa, H., Lithium Ion Diffusion in a Metal– Organic Framework Mediated by an Ionic Liquid. *Chemistry of Materials* **2015**, *27* (21), 7355-7361.

3. Wang, Z.; Tan, R.; Wang, H.; Yang, L.; Hu, J.; Chen, H.; Pan, F., A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery. *Adv Mater* **2018**, *30* (2).

4. Wang, Z.; Wang, Z.; Yang, L.; Wang, H.; Song, Y.; Han, L.; Yang, K.; Hu, J.; Chen, H.; Pan, F., Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. *Nano Energy* **2018**, *49*, 580-587.

5. Wiers, B. M.; Foo, M. L.; Balsara, N. P.; Long, J. R., A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. *J Am Chem Soc* **2011**, *133* (37), 14522-5.

6. Ameloot, R.; Aubrey, M.; Wiers, B. M.; Gomora-Figueroa, A. P.; Patel, S. N.; Balsara, N. P.; Long, J. R., Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. *Chemistry* **2013**, *19* (18), 5533-6.

7. Nozari, V., Calahoo, C., Tuffnell, J.M. et al. Sodium Ion Conductivity in Superionic IL-Impregnated Metal-Organic Frameworks: Enhancing Stability Through Structural Disorder. *Sci Rep* 10, 3532 (**2020**). https://doi.org/10.1038/s41598-020-60198-w.

8. Zhang, G., Shu, J., Xu, L. *et al.* Pancake-Like MOF Solid-State Electrolytes with Fast Ion Migration for High-Performance Sodium Battery. *Nano-Micro Lett.* **13**, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0.

Zettl, R.; Lunghammer, S.; Gadermaier, B.; Boulaoued, A.; Johansson, P.; Wilkening, H.; Hanzu
I. High Li<sup>+</sup> and Na<sup>+</sup> Conductivity in New Hybrid Solid Electrolytes based on the Porous MIL-121 Metal

Organic Framework