Electronic Supporting Information

Carbazole appended trans-dicationic pyridinium porphyrin finds supremacy in DNA binding/photocleavage over non-carbazolyl analogue

Athulya Das,¹ Thasnim P Mohammed,¹ Rajesh Kumar,¹ Sarmistha Bhunia,² Muniyandi Sankaralingam*¹

¹Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
²School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India

*Corresponding author email: msankaralingam@nitc.ac.in; sankarjan06@gmail.com
Fig. S1. (A) UV-visible absorption and (B) Fluorescence emission spectra of 1 recorded in CHCl₃ at 298 K.
Fig. S2. 1H NMR spectrum of 1 recorded in CDCl$_3$. Marked peak with an asterisk (*) at 1.56 and 7.26 ppm indicates residual CDCl$_3$ and water respectively.
Fig. S3. Mass spectrum of 1 recorded in CHCl₃.

Fig. S4. Experimental (top) and theoretical (bottom) isotopic distribution of 1 was recorded in CHCl₃.
Fig. S5. 1H NMR spectrum of 2 recorded in DMSO-d_6. Marked peak with an asterisk (*) at 2.5 and 3.5 ppm indicates residual DMSO and water, respectively.

Fig. S6. 13H NMR spectrum of 2 recorded in DMSO-d_6. Marked peak with an asterisk (*) at 39-39.9 ppm indicates residual DMSO.
Fig. S7. Mass spectrum of 2 recorded in CH$_3$OH.

Fig. S8. Theoretical (top) experimental (bottom) isotopic distribution of 2 recorded in CH$_3$OH.
Fig. S9. Mass spectrum of 3 recorded in CH$_3$OH.

Fig. S10. Theoretical (top) experimental (bottom) isotopic distribution of 3 recorded in CH$_3$OH.
Fig. S11. 13H NMR spectrum of 4 recorded in DMSO-d_6. Marked peak with an asterisk (*) at 39.1-39.8 ppm indicates residual DMSO, 29-31.5 ppm indicates hexane, and 69.8 ppm indicates chloroform.
Fig. S12. Mass spectrum of 4 recorded in CH$_3$OH.

Fig. S13. Theoretical (top) experimental (bottom) isotopic distribution of 4 recorded in CH$_3$OH.
Fig. S14. Cyclic voltammograms (oxidation) of 2, 3 and 4 in DMF containing 0.1 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte with a scan rate of 0.1 V/s.
Fig. S15. UV-Visible spectra of compound 1 in aqueous phase before (red) and after (black) extraction with the water-saturated 1-octanol.

Fig. S16. UV-Visible spectra of compound 2 in aqueous phase before (red) and after (black) extraction with the water-saturated 1-octanol.
Fig. S17. UV-Visible spectra of compound 3 in aqueous phase before (red) and after (black) extraction with the water-saturated 1-octanol.

Fig. S18. UV-Visible spectra of compound 4 in aqueous phase before (red) and after (black) extraction with the water-saturated 1-octanol.
Fig. S19. (A) Absorption spectra of 2 in pH=7.2 buffer at 25 °C in the presence of the increasing amount of CT-DNA. [2] = 6 μM, [DNA] = Increment of 0.4 μM. The grey arrow indicates the change in absorption upon increasing the DNA concentration. (B) A plot of [DNA]/(Δε) vs.[DNA].
Fig. S20. (A) Absorption spectra of 3 in pH = 7.2 buffer at 25 °C in the presence of an increasing amount of CT-DNA. [3] = 6 μM, [DNA] = Increment of 0.4 μM. The grey arrow indicates the change in absorption upon increasing the DNA concentration. (B) A plot of [DNA]/(Δε) vs. [DNA].
Fig. S21. Fluorescence emission spectra of 2 in pH = 7.2 buffer solution, with increasing concentration of CT-DNA. [2] = 6 μM, [DNA] = increment of 0.2 μM. The grey arrow indicates the change in emission intensity upon increasing the complex concentration.
Fig. S22. (A) Emission spectra of EB bound to DNA in the presence of porphyrins, (A) 2 with increasing concentration of CT DNA. [DNA] = 12 μM, [EB] = 5 μM, [2] = 1.6 μM increment. The grey arrow indicates the change in emission intensity upon increasing the concentration of [2]. (B) Fluorescence quenching curve of EB bound DNA by the porphyrins.
Fig. S23. Emission spectra of EB bound to DNA in the presence of porphyrins, (A) 3 with increasing concentration of CT DNA. [DNA] = 12 μM, [EB] = 5 μM, [3] = 1.6 μM increment. The grey arrow indicates the change in emission intensity upon increasing the concentration of [3] (B) Fluorescence quenching curve of EB bound DNA by the porphyrins.
Fig. S24. Molecular docked structure and interactions of 2 with DNA.
Fig. S25. Molecular docked structure and interactions of 3 with DNA.

Fig. S26. The time-dependent absorption spectrum of compound 2 under the light source of $\lambda = 450$–750 nm, 15 J cm2.
Fig. S27. The time-dependent absorption spectrum of compound 3 under the light source of $\lambda = 450\text{–}750$ nm, 15 J cm$^{-2}$.

Fig. S28. The time-dependent absorption spectrum of compound 4 under the light source of $\lambda = 450\text{–}750$ nm, 15 J cm$^{-2}$.
Fig. S29. Change in absorbance of compound 2-4 with an increase in time of irradiation under the light source of $\lambda = 450−750$ nm, 15 J cm$^{-2}$.

Fig. S30. Effect of NaN$_3$ on the cleavage in presence of compounds 2-4. Lane (i): DNA alone; Lane (ii): DNA+10 µM 2+ 50 µM NaN$_3$; Lane (iii): DNA+10 µM 3 + 50 µM NaN$_3$; Lane (iv): DNA+10 µM 4 + 50 µM NaN$_3$.

Table S1 Electrochemical data of 2-4 in DMF using 0.1 M TBAHFP at 25°C.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$E_{1/2}$(oxd)/V</th>
<th>$E_{1/2}$(red)/V</th>
<th>Energy Level (eV)</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{HOMO}^a</td>
<td>E_{LUMO}^a</td>
<td>(From CV)</td>
<td></td>
</tr>
<tr>
<td>H$_2$TPP1</td>
<td>1.08</td>
<td>-</td>
<td>-1.11</td>
<td>-1.53</td>
</tr>
<tr>
<td>CuTPP1</td>
<td>1.01</td>
<td>1.26</td>
<td>-1.19</td>
<td>-1.71</td>
</tr>
<tr>
<td>ZnTPP1</td>
<td>0.79</td>
<td>1.38</td>
<td>-1.34</td>
<td>-1.73</td>
</tr>
<tr>
<td>2</td>
<td>0.69</td>
<td>1.04</td>
<td>-1.00</td>
<td>-1.71</td>
</tr>
<tr>
<td>3</td>
<td>0.68</td>
<td>1.01</td>
<td>-1.09</td>
<td>-1.80</td>
</tr>
<tr>
<td>4</td>
<td>0.54</td>
<td>0.99</td>
<td>-1.14</td>
<td>-1.66</td>
</tr>
</tbody>
</table>

$^aE_{\text{HOMO}} = -(E_{\text{oxd}} + 4.4)$ eV; $E_{\text{LUMO}} = -(E_{\text{red}} + 4.4)$ eV; 1Chem. Commun, 48 (2012), 8377

1J. Ramesh, S. Sujatha and C. Arunkumar, RSCAdv., 2016, 6, 63271-63285.