Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

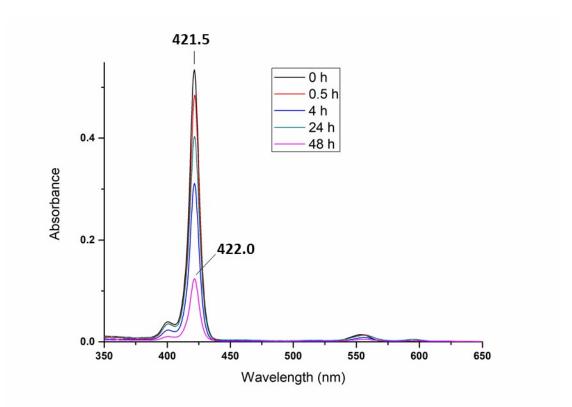
Shape dependent photocatalytic H₂ evolution of a zinc porphyrin

Emmanouil Orfanos,^a Kalliopi Ladomenou,^b* Panagiotis Angaridis,^c Athanassios G. Coutsolelos^{a,d}*

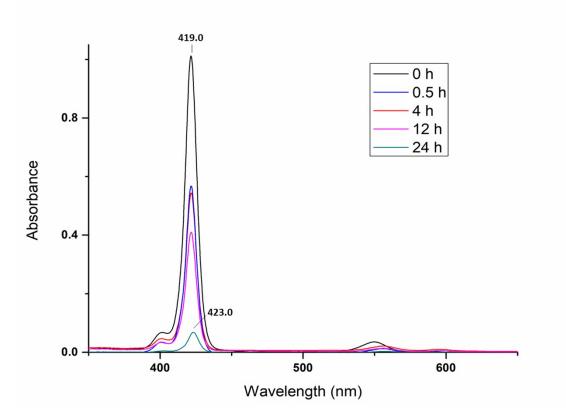
^a University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece.

^b International Hellenic University, Department of Chemistry, Laboratory of Inorganic Chemistry, Agios Loucas, 65404, Kavala Campus, Greece.

^c Aristotle University of Thessaloniki, Department of General and Inorganic Chemistry, Faculty of Chemistry, GR-54124 Thessaloniki, Greece.


^{*d*} Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, GR 70013 Heraklion, Crete, Greece

Corresponding Authors


E-mail: acoutsol@uoc.gr (A.G.C.); kladomenou@chem.ihu.gr (K.L.); panosangaridis@chem.auth.gr (P.A.); manosorf17@gmail.com (E.O.)

Experimental Procedure

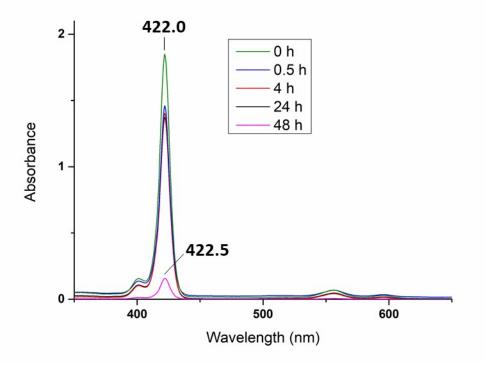
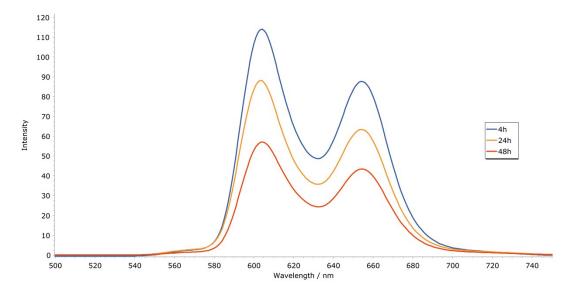
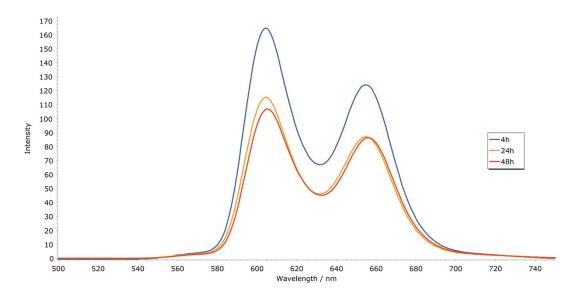
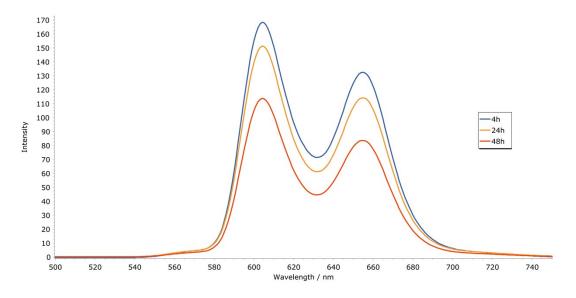

In a typical procedure the photosensitizers were prepared as following: 5 mgr of **ZnTPP** was placed in a small vial and 0.5 ml of a "good" solvent was added. When **ZnTPP** was fully dissolved 2 ml of methanol was inserted. The solution was stirred vigorously with sonication for one minute, then the mixture was capped and left to stand at r.t. After 48 h the solvents were removed in vacuum oven. In order to perform the photocatalytic experiment in the same vial, 5 ml of ascorbic acid and 5% w/w Na₂PtCl₆.6H₂O were added. The mixture was irradiated with a 100 W white led lamp. The same process was repeated for the three different "good" solvents THF, CHCl₃, Tol.

Figure S1. UV-Vis spectra of octahedral (THF/MeOH 1:4) in solution at various time intervals 0 h, 0.5 h, 4 h, 24 h, 48 h.


Figure S2. UV-Vis spectra of flowers (CHCl₃/MeOH 1:4) in solution at various time intervals 0 h, 0.5 h, 4 h, 24 h, 48 h.


Figure S3. UV-Vis spectra of manta-ray (Tol/MeOH 1:4) in solution at various time intervals 0 h, 0.5 h, 4 h, 24 h, 48 h.


Figure S4. UV-Vis spectra of ZnTPP in CHCl₃, Toluene and THF.

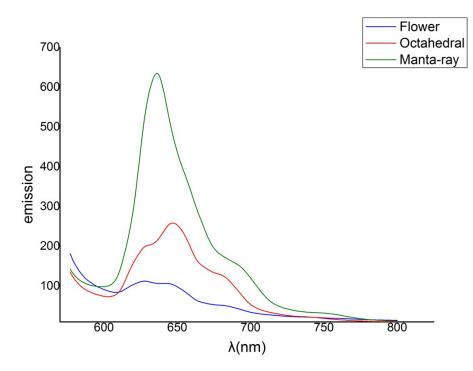
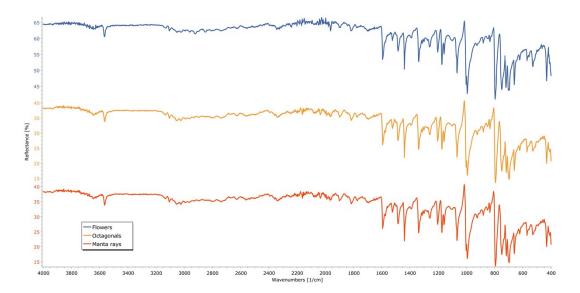

Figure S5. Fluorescence spectra of octahedral (THF/MeOH 1:4) in solution at various time intervals 4 h, 24 h, 48 h.

Figure S6. Fluorescence spectra of flowers (CHCl₃/MeOH 1:4) in solution at various time intervals 4 h, 24 h, 48 h.


Figure S7. Fluorescence spectra of manta-ray (Tol/MeOH 1:4) in solution at various time intervals 4 h, 24 h, 48 h.

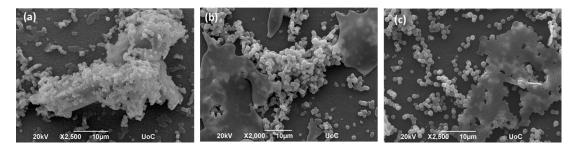

Figure S8. Fluorescence spectra of **ZnTPP** in solid state upon its formation of different structures.

Table S1.	Lifetime	decay	fluorescence	measurements	of	ZnTPP	in	different solid
structures	and in so	lution.						

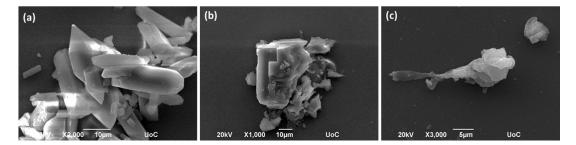
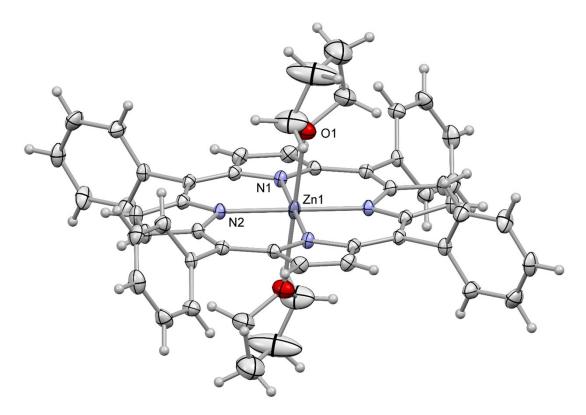

Photosensitizer	Lifetime (τ ₁) (ns)	Lifetime (τ ₂) (ns)
Octahedral (solid)	0.58 (70%)	1.96 (30%)
"flower" (solid)	0.70 (66%)	2.46 (34%)
"manta-ray" (solid)	0.76 (60%)	2.49 (40%)
ZnTPP (in CH ₂ Cl ₂)		1.97 (100%)
ZnTPP (24 h, solution of		2.10 (100%)
CHCl ₃ /MeOH, 1:4 mixture)		
ZnTPP (48 h, solution of		2.20 (100%)
CHCl ₃ /MeOH, 1:4 mixture)		

Figure S9. IR spectra of a) octahedral (THF/MeOH 1:4), b) flowers (CHCl₃/MeOH) and c) manta-ray (Tol/MeOH)

Figure S10. SEM images of supramolecular architectures with different morphologies of **ZnTPP** formed after 8 h of light irradiation in good/bad solvent: a) octahedral (THF/MeOH 1:4), b) flower (CHCl₃/MeOH 1:4), c) manta-ray (Tol/MeOH 1:4).


Figure S11. SEM images of supramolecular architectures with different morphologies of **ZnTPP** formed in water and in the presence of 5% w/w Pt and ascorbic acids 1 M, after 8 h in the dark: a) octahedral (THF/MeOH 1:4), b) flower (CHCl₃/MeOH 1:4), c) manta-ray (Tol/MeOH 1:4).

Single crystal X-ray diffraction analysis

Experimental

Single crystals of **ZnTPP**(THF)₂ were obtained by slow evaporation of a THF/CH₃OH solution of the compound at room temperature over a period of two weeks.[1] A suitable crystal was selected and mounted on a STOE IPDS diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 1.3 [2], the structure was solved with the SHELXS [3] structure solution program using Direct Methods and refined with the SHELXL 2018/3 [4] refinement package using Least Squares minimization.

Summary of Crystal Data for **ZnTPP**(THF)₂. Formula $C_{52}H_{44}N_4O_2Zn$ (M_r = 822.28 g/mol): triclinic, space group P-1, a = 9.6632(19) Å, b = 11.266(2) Å, c = 11.812(2) Å, $\alpha = 65.13(3)^{\circ}$, $\beta = 76.23(3)^{\circ}$, $\gamma = 64.73(3)^{\circ}$, V = 1052.4(5) Å³, Z = 2, T = 293(2) K, μ (MoK α) = 0.63 mm⁻¹, 3938 reflections measured (1.9° $\leq \theta \leq 25.6^{\circ}$), 2347 unique (R_{int} = 0.0661, R_{sigma} = 0.1242) which were used in all calculations. The final R₁ was 0.038 (I > 2 σ (I)) and wR2 was 0.072 (all data).

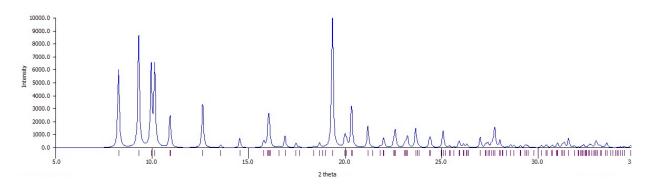
Figure S9. View of the crystal structure of $ZnTPP(THF)_2$ with displacement ellipsoids shown in the 35% probability level (Color code: C atoms, dark gray ellipsoids; O atoms, red ellipsoids; N atoms, blue ellipsoids; Zn, light mauve ellipsoid; H atoms, gray spheres of arbitrary radius).

Crystal data	
Moiety formula	$C_{52}H_{44}N_4O_2Zn$
M _r	822.28
Crystal system, space group	Triclinic, P-1
a, b, c (Å)	9.6632 (19), 11.266 (2), 11.812 (2)
α, β, γ (°)	65.13 (3), 76.23 (3), 64.73 (3)
V (Å ³)	1052.4 (5)
Ζ	1
$ ho_{ m calc}$ (g cm ⁻³)	1.298
F(000)	430
Radiation type	Μο <i>Κ</i> α (λ = 0.71073 Å)
Temperature (K)	293
μ (mm ⁻¹)	0.630
Crystal size (mm)	$0.6 \times 0.2 \times 0.07$
Data collection	
Diffractometer	STOE IPDS
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3938, 3938, 2347
R _{int}	0.0661
artheta range for data collection (°)	1.9 to 25.6
Refinement	
$R[F^2>2\sigma(F^2)], wR(F^2), S$	0.038, 0.072, 0.74
No. of reflections	3938
No. of parameters	268
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.42, -0.30

Table S2. Experimental details for ZnTPP(THF)₂

Table S3. Selected Bond Lengths for ZnTPP(THF)₂.

Atom Atom Length/Å


Zn1	N1	2.072 (2)
Zn1	N2	2.060 (2)

Zn1 O1 2.419 (3)

Table S4. Selected Bond Angles for ZnTPP(THF)₂.

Atom Atom Atom Angle/°

N1	Zn1	N1 ⁱ	180.0	
N1	Zn1	N2	89.40 (8)	
N1	Zn1	01 ⁱ	93.24 (8)	
N1	Zn1	01	86.76 (8)	
N1	Zn1	N2 ⁱ	90.60 (8)	
N2	Zn1	N2 ⁱ	180.0	
N2	Zn1	N1 ⁱ	90.60 (8)	
N2	Zn1	01 ⁱ	87.11 (9)	
N2	Zn1	01	92.89 (9)	
01 ⁱ	Zn1	01	180.00 (10)	
¹ (i) −x, −y, −z				

Figure S10. Simulated PXRD pattern obtained from the single-crystal X-ray structure of **ZnTPP**(THF)₂.

References

- Coutsolelos A. G., Orfanos E., Ladomenou K., Angaridis P., CCDC 2153314: Experimental Crystal Structure Determination, 2022, DOI: 10.5517/ccdc.csd.cc2b8pr2
- 2. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H.

(2009), J. Appl. Cryst. 42, 339-341.

3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

4. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.