Supporting Information

Excited state intramolecular proton transfer induced phosphate ion targeted ratiometric fluorescent switch to monitor phosphate ion in human peripheral blood mononuclear cells

Sangita Das,^{a*} Partha Pratim Das,^b James. W. Walton, ^a Kakali Ghoshal, ^c Lakshman Patra,^d and Maitree Bhattacharyya ^c

^a Durham University, Department of Chemistry. Durham, DH1 3LE, UK, Email: sangita.das@durham.ac.uk

^{b.} Center for Novel States of Complex Materials Research, Seoul National University, Seoul, 08826, Republic of Korea

^{c.} Department of Biochemistry, University of Calcutta, Kolkata-700019, India

^{d.} Jadavpur University, Jadavpur

1.	Experimental-General
2.	Determination of detection limit
3.	Linear responsive curve (UV-Vis) of BTP depending on PO_4^{3-} concentration
4.	Determination of binding constant
5.	Job's Plot
6.	Determination of fluorescence Quantum Yield
7.	pH study
8.	UV-Vis and Fluorescence study of BTP in presence of other guest analytes
9.	Comparison Study of Reversibility Experiment
10.	IR Spectra of BTP
11. 12. 13.	Fluorescence life time data of BTP Truth table for INHIBIT Logic Gate ¹ H NMR spectrum of BTP
14.	¹³ C NMR spectrum of BTP
15.	Mass spectrum (ESI-MS) of BTP
16.	¹ H NMR titration of BTP with PO_4^{3}
17.	Comparison Study

1. Experimental

General:

Chemicals and solvents were purchased from Sigma-Aldrich and used without further purification. Silica gel (100-200 mesh, Merck) was used for column chromatography. NMR spectra were recorded on a Varian VXR-400 spectrometer (¹H at 300 MHz, ¹³C at 75 MHz) at 298 K in commercially available d⁶ DMSO, with TMS as an internal standard. Chemical shifts are expressed in δ units and coupling constants in Hz. UV-Vis spectra were recorded using a Cary 5000 high performance UV-Vis-NIR spectrophotometer, controlled by Cary WinUV software. Fluorescence was recorded using a Horiba Fluorolog-3 spectrometer using FluorEssence software. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer, using KBr discs. Melting points were determined on a hot-plate melting point apparatus in an open-mouth capillary and are uncorrected.

General method of UV-Vis absorption and fluorescence emission titrations:

For both UV-Vis and fluorescence titrations, a stock solution of **BTP** was prepared (10 μ M) in CH₃OH-H₂O (1/4, v/v) in the presence of HEPES buffer (10 mM) solution at pH = 7.2. The solution of the guest anions using their sodium salts at 10 μ M were prepared in buffered deionised water at pH 7.2. The absorption spectra of these solutions were recorded by means of UV-Vis methods using a 10 mm path length quartz cuvette. Fluorescence emission was measured in a 10 mm path length quartz cuvette with the excitation wavelength 380 nm. Fluorescence lifetimes were measured using a time-resolved spectrofluorometer from IBH, UK. The instrument uses a picoseconds diode laser (NanoLed-07, 380 nm) as the excitation source and works on the principle of time-correlated single photon counting. The goodness of fit was evaluated by χ^2 criterion and visual inspection of the residuals of the fitted function to the data.

Details of bio-imaging

Materials Methods

We have conducted an experiment to validate the ability of **BTP** to detect intracellular phosphate. For this purpose, we have isolated peripheral blood mononuclear cells (PBMCs) from venous blood. Approximately 10 ml venous blood was obtained from a healthy, male volunteer donor (age - 32 years) with his informed consent. PBMCs were isolated by density gradient centrifugation utilizing histopaque-1077 gradient [SIGMA]. PBMCs were washed two times with HEPES buffer (SIGMA) and suspended serum-free DMEM supplemented with 2 mmol/l l-glutamine and 50 μ g/ml gentamicin having

approximately 3 x 10⁶ cells. The cells were incubated with 500 μ M Pi or 5mM ATP at 37°C for 2 hours at 5% CO₂ and 95% air. Then the cells treated with ATP were incubated with 1U, 1.5U or 2U of apyrase for 1 hour respectively. After that, the cells were incubated with 10 μ M of BTP and incubated for 1 hour at 37°C. Cells were washed twice with 1ml HEPES buffer. Intracellular fluorescence intensity was detected under a fluorescence microscope (Carl Zeiss HBO 100) under 40X magnification with fluorescence emissions at 560 nm (540 nm – 570 nm, Yellow channel) and 480 nm (480 nm – 530 nm, Green channel), respectively.

MTT assay

To determine cell viability against **BTP**, PBMCs were treated with different concentrations of **BTP** solution (5-50 μ M) with or without Pi (500 μ M) for 1 hour at 37^oC against control cell suspension without **BTP**. Cell density remains 0.05 x 10⁶ cells per well in a 96- well plate. 100 μ l of MTT solution (5 mg/ml) was added to each well including control and incubated for 4 hours at 37^oC. The purple-colored formazan crystals were dissolved with 100 μ l DMSO and the absorbance were measured at 570 nm. Cell viability was calculated using the following calculation:

% of Cell Viability = $\frac{\text{(Absorbance of treatment group - blank)}}{\text{(Absorbance of control group - blank)}} X 100$

2. Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **BTP** without PO_4^{3-} was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit (DL) of **BTP** for PO_4^{3-} was determined from the following equation: $DL = K \times Sb_1/S$ where K = 2 or 3 (we take 3 in this case); Sb_1 is the standard deviation of the blank solution; S is the slope of the calibration curve. For PO_4^{3-} : From the graph we get slope = 81061.3736, and Sb_1 value is 0.00225. Thus using the formula we get the Detection Limit = 8.33×10^{-8} M i.e. **BTP** can detect PO_4^{3-} in this minimum concentration by fluorescence techniques.

Figure S1: Emission intensity ratio I_{480}/I_{560} of BTP depending on the concentration of PO₄³⁻

3. Linear responsive curve BTP depending on PO_4^{3-} concentration:

Figure S2: UV-Vis intensity ratio A_{430}/A_{300} of BTP respectively depending on the concentration of PO_4^3

4. Determination of binding constant

By Fluorescence method:

Association constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(I-I_o) = 1/{K(I_{max}-I_o)[M^{x+}]^n} + 1/[I_{max}-I_o]$$

Figure S3: Benesi–Hildebrand plot from UV-Vis titration data of receptor BTP (10 μ M) with PO₄³⁻.

Here I_o is the emission of receptor in the absence of guest, I is the emission recorded in the presence of added guest, I_{max} is emission in presence of added $[M^{x+}]_{max}$ and K_a is the association constant, where $[M^{X+}]$ is $[PO_4^{3-}]$. The association constant (K_a) could be determined from the slope of the straight line of the plot of $1/(I-I_o)$ against $1/[PO_4^{3-}]$ and is found to be $1.92 \times 10^5 \text{ M}^{-1}$.

5. Job's Plot

Stock solution of same concentration of the receptors and the guest were prepared in the order of 2.0 x 10⁻⁵ ML⁻¹ CH₃OH-H₂O (1:1, v/v). The emission in each case with different *host–guest* ratio but equal in volume was recorded. Job plots were drawn by plotting ΔI . X_{host} vs X_{host} (ΔI = change of intensity of the emission spectrum during titration and X_{host} is the mole fraction of the host).

Figure S4: Job plot diagram of **BTP** with PO_4^{3-} (where X_h is the mole fraction of **BTP** and ΔI indicates the change of emission at 480 nm).

6. Determination of fluorescence Quantum Yield (Φ) of BTP and its complex with PO_4^{3-}

To measure the quantum yields of **BTP** and its complex with PO_4^{3-} , the absorbance of the compounds in methanol solution were recorded. The emission spectra were then recorded using the maximum excitation wavelengths, and the integrated areas of the fluorescence-corrected spectra were measured. The quantum yield of **BTP** was then calculated by comparison with fluorescein ($\Phi s = 0.97$ in basic ethanol) as a reference. The quantum yield of **BTP** - PO_4^{3-} was calculated by comparison with rhodamine B ($\Phi s = 0.66$ in ethanol) as a reference. In each case the following equation was used:

$$\Phi_{\rm x} = \Phi_{\rm s} \times \left(\frac{Ix}{Is}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^2$$

where, x and s indicate the unknown and standard solution, respectively, Φ is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance and n is the refractive index of the solvent. The quantum yield calculated for BTP using the above equation was 0.26. The quantum yield calculated for BTP-PO₄³⁻ using the above equation was 0.44.

7. pH Study:

Figure S5: Fluorescence response of **BTP** and BTP-PO₄³⁻ as a function of pH in CH₃OH/H₂O (1/4, v/v), pH is adjusted by using aqueous solutions of 1 M HCl or 1 M NaOH.

8. UV-Vis and Fluorescence study of BTP in presence of other guest analytes.

Figure S6: (a) UV-vis spectra and (b) Fluorescence spectra of **BTP** upon gradual addition of 5 equivalents of stated guest anions. BTP (10 μ M) in MeOH/H₂O (1/4, v/v), HEPES buffer (10 mM), pH 7.2, 25 °C.

Comparison studies with cations:

Figure S6 C: Fluorescence spectra of **BTP** upon gradual addition of 3 equivalents of stated guest cations. BTP (10 μ M) in MeOH/H₂O (1/4, v/v), HEPES buffer (10 mM), pH 7.2, 25 °C.

9. Comparison Study of Reversibility Experiment

Figure S7: Fluorescence spectra of **BTP-PO**₄³⁻ upon gradual addition of 5 equivalents of stated guest cations. **BTP-PO**₄³⁻ (10 μ M) in MeOH/H₂O (1/4, v/v), HEPES buffer (10 mM), pH 7.2, 25 °C.

10. IR spectra of BTP

Figure S8: FT-IR spectrum of BTP

11. Fluorescence life time of BTP

Figure S9: Time-resolved fluorescence decay of BTP (Red) and BTP + PO_4^{3-} (Green).

Table S1 Fluorescence lifetime data of BTP

Entry	Φ	τ (ns)	$k_{\rm r} (10^8 \times {\rm s}^{-1})$	$k_{\rm nr} (10^8 \times {\rm s}^{-1})$
BTP	0.26	2.31	1.16	3.16
BTP-PO ₄ ³⁻	0.44	4.66	0.94	1.19

12. Truth table for INHIBIT Logic Gate

Table S2

Input 1 (PO ₄ ³⁻)	Input 2 (Zn^{2+})	Output (Emission intensity at 480 nm)
0	0	0
1	0	1
0	1	0
1	1	0

13. ¹H NMR spectrum of BTP:

Figure S10: ¹H NMR (300 MHz) spectrum of BTP in d_6 -DMSO (298 K).

14. ¹³C NMR spectrum of BTP

Figure S11: ¹³C NMR (75 MHz) spectrum of BTP in d₆-DMSO (298 K).

15. HRMS of BTP:

Figure S12: HRMS spectrum of the BTP (positive ESI mode)

16. ¹*H* NMR titration of BTP with PO_4^{3-}

Figure S13: Partial ¹H NMR (300 MHz) spectra of (a) **PBT** and (b) **PBT** +**PO**₄³⁻ in d₆-DMSO. [BTP] = 2.12×10^{-3} M; [PO₄³⁻] = 4.24×10^{-3} M (298 K).

17. Comparison Study:

Sr.	Fluorophore Used	Ratiometric	Detection	Bioimaging Studies	References
No		Fluorescence	Limit	(endogenous phosphate	
		Change		detection)	
1.	Dimethylcarbamodithioate	No	7.9 nM	No	Tetrahedron
	-calix[4]arene				Letters, 2021,
					71, 153046
2.	Coumarin	No	$8.11 \times 10^{-7} \text{ M}$	Yes	Anal. Chem.
					2015, 87, 2,
					1196–1201
3.	Pyridine-Biquinoline	No	0.85 μM	Yes (But not	10.1021/ac50
				endogenous phosphate	4536q
				detection)	
4.	methylphenol with 4-	No	1.67 nM	Yes (But not	Anal. Chem.
	(1Hbenzo[endogenous phosphate	2015, 87, 13,
	d]imidazol-2-yl)aniline			detection)	6974–6979.
5.	BINOL	No	95 nM	Yes (But not	10.1039/c4an
				endogenous phosphate	01615g
				detection)	
6.	Dihydroxyaniline	No	5.4 ppb	Yes (But not	10.1039/C4C
	bisimidazolium derivative			endogenous phosphate	C00752B.
				detection)	
7.	2-hydroxybenzohydrazide	No	2.7 nM	No	10.1039/c4dt
					01799d
8.	Cyanine dye	Yes	$9.37 \times 10^{-7} \text{ M}$	Yes	10.1016/j.dye
					pig.2016.04.0
					32
9.	Benzo[d]thiazol-2-yl)-2-	Yes	8.33 × 10 ⁻⁸ M	Yes	Present Work
	picolinohydrazide				