Supplementary Information

for

Bis(di-tert-butylindenyl)tetrelocenes

Liane Hildegard Staub,^a Jessica Lambert,^a Carsten Müller,^a Bernd Morgenstern,^a Michael Zimmer,^a Joshua Warken,^a Aylin Koldemir,^b Theresa Block,^b Rainer Pöttgen,^b and André Schäfer*^a

^a Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University Campus Saarbrücken, 66123 Saarbrücken, Germany

^b Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster Corrensstrasse 30, 48149 Münster, Germany

NMR Spectra	S2 — S9
XRD Data	S10 — S14
Computational Details	S15
References	S16

NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz, C₆D₆, 295 K) of lithium dimethoxyethane diisopropylindenide, **1a**·(dme).

Figure S2. ¹³C{¹H} NMR spectrum (101 MHz, C_6D_6 , 295 K) of lithium dimethoxyethane diisopropylindenide, 1a·(dme).

Figure S3. $^{7}Li{^{1}H}$ NMR spectrum (156 MHz, C₆D₆, 295 K) of lithium dimethoxyethane diisopropylindenide, 1a·(dme).

Figure S4. ⁷Li{¹H} CP-MAS(upper trace: 10 kHz; lower trace: 13 kHz) NMR spectra (156 MHz, 297 K) of lithium dimethoxyethane diisopropylindenide, **1a**·(dme).

Figure S5. ¹H NMR spectrum (400 MHz, THF-D8, 295 K) of sodium di-*tert*-butylindenide, **1b**.

Figure S6. ¹³C{¹H} NMR spectrum (101 MHz, THF-D8, 295 K) of sodium di-*tert*-butylindenide, 1b.

Figure S7. ¹H NMR spectrum (400 MHz, C₆D₆, 295 K) of bis(di-*tert*-butylindenyl)germanocene, 2a.

Figure S8. ¹³C{¹H} NMR spectrum (101 MHz, C₆D₆, 295 K) of bis(di-*tert*-butylindenyl)germanocene, 2a.

Figure S9. ¹H NMR spectrum (400 MHz, C₆D₆, 295 K) of bis(di-*tert*-butylindenyl)stannocene, **2b**.

Figure S10. ¹³C{¹H} NMR spectrum (101 MHz, C₆D₆, 296 K) of bis(di-*tert*-butylindenyl)stannocene, **2b**.

Figure S11. ¹¹⁹Sn{¹H} NMR spectrum (149 MHz, C_6D_6 , 295 K) of bis(di-*tert*-butylindenyl)stannocene, **2b**.

Figure S12. ¹¹⁹Sn{¹H} CP-MAS(13 kHz) NMR spectra (149 MHz) of bis(di-*tert*-butylindenyl)stannocene, **2b**.

Figure S13. ¹H NMR spectrum (400 MHz, C₆D₆, 294 K) of bis(di-*tert*-butylindenyl)plumbocene, 2c.

Figure S14. ¹³C{¹H} NMR spectrum (101 MHz, C₆D₆, 294 K) of bis(di-*tert*-butylindenyl)plumbocene, 2c.

Figure S15. ²⁰⁷Pb{¹H} NMR spectrum (83 MHz, C₆D₆, 294 K) of bis(di-*tert*-butylindenyl)plumbocene, 2c.

Figure S16. ²⁰⁷Pb{¹H} CP-MAS(13 kHz) NMR spectra (83 MHz) of bis(di-*tert*-butylindenyl)plumbocene, 2c.

XRD Data

Lithium dimethoxyethane diisopropylindenide, 1a (dme):

2154213	
C ₁₉ H ₂₉ LiO ₂	
296.36	
133(2) K	
0.71073 Å	
triclinic	
<i>P</i> -1	
a = 8.1149(10) Å	$\alpha = 73.834(4)^{\circ}$
b = 9.9608(11) Å	$\beta=74.958(4)^\circ$
c = 12.9882(16) Å	$\gamma = 66.433(4)^{\circ}$
911.04(19) Å ³	
2	
1.080 mg/m ³	
0.067 mm ⁻¹	
324	
0.239 x 0.085 x 0.058 mm ³	
2.537 to 25.675°	
-9<=h<=9, -11<=k<=12, -15<=l<=15	
24467	
3309 [R(int) = 0.0728]	
96.0%	
semi-empirical from equivalents	
0.7455 and 0.6730	
full-matrix least-squares on F ²	
3309 / 0 / 208	
1.068	
R1 = 0.0587, wR2 = 0.1505	
R1 = 0.0796, wR2 = 0.1645	
n/a	
0.241 and -0.204 e.Å ⁻³	
	2154213 $C_{19}H_{29}LiO_2$ 296.36 133(2) K 0.71073 Å triclinic <i>P</i> -1 a = 8.1149(10) Å b = 9.9608(11) Å c = 12.9882(16) Å 911.04(19) Å^3 2 1.080 mg/m ³ 0.067 mm ⁻¹ 324 0.239 x 0.085 x 0.058 mm ³ 2.537 to 25.675° -9<=h<=9, -11<=k<=12, -15 24467 3309 [R(int) = 0.0728] 96.0% semi-empirical from equival- 0.7455 and 0.6730 full-matrix least-squares on 3309 / 0 / 208 1.068 R1 = 0.0587, wR2 = 0.1505 R1 = 0.0796, wR2 = 0.1645 n/a 0.241 and -0.204 e.Å ⁻³

Sodium tris(dimethoxyethane) di-tert-butylindenide, 1b·(dme)3:

CCDC code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices $[I>2\sigma(I)]$ R indices (all data) Extinction coefficient Largest diff. peak and hole

2154214 $C_{29}H_{53}NaO_6$ 520.70 133(2) K 0.71073 Å monoclinic P21/c $\alpha = 90^{\circ}$ a = 11.6172(2) Å b = 15.9650(3) Å $\beta = 103.5900(10)^{\circ}$ c = 17.7264(4) Å $\gamma = 90^{\circ}$ 3195.64(11) Å³ 4 1.082 mg/m³ 0.085 mm⁻¹ 1144 0.309 x 0.249 x 0.138 mm³ 2.209 to 27.115° -14<=h<=14, -20<=k<=20, -22<=l<=22 49094 7058 [R(int) = 0.0545] 100.0% semi-empirical from equivalents 0.7455 and 0.6877 full-matrix least-squares on F² 7058 / 0 / 337 1.033 R1 = 0.0409, wR2 = 0.0950 R1 = 0.0581, wR2 = 0.1059 n/a 0.207 and -0.217 e.Å-3

Bis(di-tert-butylindenyl)germanocene, 2a:

CCDC code	2154217	
Empirical formula	C ₃₄ H ₄₆ Ge	
Formula weight	527.30	
Temperature	148(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 10.979(3) Å	$\alpha = 90^{\circ}$
	b = 14.731(4) Å	$\beta = 107.306(8)^{\circ}$
	c = 18.973(4) Å	$\gamma = 90^{\circ}$
Volume	2929.7(12) Å ³	
Z	4	
Density (calculated)	1.195 Mg/m ³	
Absorption coefficient	1.065 mm⁻¹	
F(000)	1128	
Crystal size	0.254 x 0.202 x 0.088 mm ³	
Theta range for data collection	1.934 to 27.137°.	
Index ranges	-14<=h<=14, -18<=k<=18, -24<=l<=24	
Reflections collected	48002	
Independent reflections	6464 [R(int) = 0.0442]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	semi-empirical from equivalents	
Max. and min. transmission	0.7455 and 0.6975	
Refinement method	full-matrix least-squares on F ²	
Data / restraints / parameters	6464 / 0 / 328	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2σ(I)]	R1 = 0.0262, wR2 = 0.0624	
R indices (all data)	R1 = 0.0334, wR2 = 0.0662	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.312 and -0.294 e.Å ⁻³	

Bis(di-tert-butylindenyl)stannocene, 2b:

CCDC code	2154215	
Empirical formula	C ₃₄ H ₄₆ Sn	
Formula weight	573.40	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 11.0857(3) Å	$\alpha = 90^{\circ}$
	b = 14.8512(4) Å	$\beta = 105.5710(10)^{\circ}$
	c = 18.8414(5) Å	$\gamma = 90^{\circ}$
Volume	2988.12(14) Å ³	
Z	4	
Density (calculated)	1.275 mg/m ³	
Absorption coefficient	0.874 mm ⁻¹	
F(000)	1200	
Crystal size	0.234 x 0.201 x 0.137 mm ³	
Theta range for data collection	2.244 to 30.524°	
Index ranges	-15<=h<=15, -21<=k<=21, -	26<=l<=25
Reflections collected	64683	
Independent reflections	9129 [R(int) = 0.0331]	
Completeness to theta = 25.242°	99.9%	
Absorption correction	semi-empirical from equivalents	
Max. and min. transmission	0.7461 and 0.6927	
Refinement method	full-matrix least-squares on F ²	
Data / restraints / parameters	9129 / 0 / 328	
Goodness-of-fit on F ²	1.036	
Final R indices $[I>2\sigma(I)]$	R1 = 0.0236, wR2 = 0.0488	
R indices (all data)	R1 = 0.0332, wR2 = 0.0527	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.362 and -0.395 e.Å ⁻³	

Bis(di-tert-butylindenyl)plumbocene, 2c:

CCDC code	2154216	
Empirical formula	C ₃₄ H ₄₆ Pb	
Formula weight	661.90	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 11.1603(4) Å	$\alpha = 90^{\circ}$
	b = 14.9272(5) Å	$\beta = 106.1980(10)^{\circ}$
	c = 18.8917(7) Å	$\gamma = 90^{\circ}$
Volume	3022.27(19) Å ³	
Z	4	
Density (calculated)	1.455 Mg/m ³	
Absorption coefficient	5.601 mm⁻¹	
F(000)	1328	
Crystal size	0.148 x 0.142 x 0.092 mm ³	
Theta range for data collection	2.245 to 28.725°.	
Index ranges	-15<=h<=14, -18<=k<=20, -25<=l<=25	
Reflections collected	50956	
Independent reflections	7815 [R(int) = 0.0351]	
Completeness to theta = 25.242°	100.0%	
Absorption correction	semi-empirical from equival	ents
Max. and min. transmission	0.7458 and 0.6242	
Refinement method	full-matrix least-squares on F ²	
Data / restraints / parameters	7815 / 0 / 328	
Goodness-of-fit on F ²	1.065	
Final R indices [I>2σ(I)]	R1 = 0.0190, wR2 = 0.0377	
R indices (all data)	R1 = 0.0290, wR2 = 0.0408	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.358 and -0.797 e.Å ⁻³	

Computational Details

All calculations were performed using the Gaussian 16, Revision C.01 package of programs¹. Geometry optimizations have been carried out at the PBE0-D3/def2-TZVP² level of theory. The optimized structure was confirmed to be a minimum on the potential energy surface by a subsequent frequency analysis (all positive eigenvalues).

xyz coordinates of optimized geometry of bis(di-tert-butylindenyl)germanocene, 2a:

Ge	-0.00000100	-0.00001000	0.03965300
C	2.20394700	0.41307700	1.10172700
C	-2.20397100	-0.41306300	1.10169800
č	2.12343300	-0.99340700	-0.20864400
č	2.34975000	1.12808200	2.42936900
č	-2.12343800	0.99341600	0.91728200
С	-2.43422600	-0.96495300	-0.20867100
С	-2.34980900	-1.12805300	2.42934400
н	1.97954200	-1.70163500	1.71961900
C	2.16591400	-1.33720800	-0.44542100
C C	2.39963500	-0 11275900	-1 15993800
č	3,78580200	1.65470200	2.55554000
Ċ	2.09273600	0.16817700	3.58857000
С	1.36616800	2.29553500	2.54738800
н	-1.97955700	1.70165100	1.71957100
C	-2.16589000	1.33720500	-0.44546900
č	-2.39961200	-2 27936500	-1.15997600
č	-1.36621200	-2.29548800	2.54741200
C	-2.09285900	-0.16813000	3.58854500
С	-3.78585700	-1.65469500	2.55547200
С	2.10134500	-2.73657600	-1.01684100
Н	2.72282500	3.10484400	0.03971200
C C	2.67216900	2.51239700	-1.99014500
н	3 92564200	2 15112200	3 52029700
H	4.50272800	0.83330600	2.48582500
н	4.02443400	2.37069800	1.76778100
н	2.16125900	0.70393700	4.53859200
Н	1.09675800	-0.27708200	3.52791700
H	2.82667100	-0.64083000	3.60866000
	1.52570000	2.83735900	3.46397400
н	0.33536200	1.93230100	2.53801200
C	-2.10130300	2.73656600	-1.01690000
С	-2.58932900	-0.16970900	-2.52891600
С	-2.87216600	-2.51241500	-1.99616100
Н	-2.72283800	-3.10483900	0.03970500
н	-1.52578500	-2.83732100	3.48398600
н	-0.33541400	-1 93223400	2 53809600
H	-2.16141400	-0.70388200	4.53857000
н	-1.09688700	0.27714800	3.52793800
н	-2.82680900	0.64086400	3.60859600
Н	-3.92572500	-2.15109500	3.52023500
н	-4.50279500	-0.83331300	2.48571000
C	3.46321000	-3.08953800	-1.62930400
č	1.78776000	-3.75012000	0.08144100
Ċ	1.00969700	-2.84974400	-2.08683800
н	3.06812500	3.52119600	-2.34151800
с	2.82433600	1.45893800	-2.93085700
H C	2.56779600	-0.62475000	-3.26370900
C C	-1 78773800	3 75012000	0.08138000
č	-3.46315400	3.08953100	-1.62939300
н	-2.56773300	0.62471500	-3.26375700
С	-2.82429300	-1.45896700	-2.93088400
H	-3.06809900	-3.52121800	-2.34152600
н	3.44390000	-4.10315300	-2.04015600
н	4 25023900	-3.04097300	-0.87286800
H	1.72445500	-4.75347200	-0.34692500
н	2.56397200	-3.76520800	0.85073900
н	0.83061300	-3.52937300	0.56180900
н	1.01576100	-3.85180400	-2.52604000
н	0.02036800	-2.67589800	-1.65656400
	2 98185100	-2.13006100	-2.89425400
н	-1 01568900	3 85177200	-2 52609500
H	-0.02031400	2.67588500	-1.65657400
н	-1.14495500	2.13002200	-2.89428100
н	-1.72441800	4.75346700	-0.34699500
н	-2.56396800	3.76521900	0.85065900
п ц	-0.83060400	3.52937400	0.36177400
н	-3.73340000	2.40340500	-2.43368800
H	-4.25019900	3.04097800	-0.87297400
н	-2.98179200	-1.67354100	-3.98171900

References

[1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2019**.
[2] a) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. **1996**, *105*, 9982-9985; b) C. Adamo, V. Barone, J. Chem. Phys. **1999**, *110*, 6158-6170; c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. **2010**, *132*, 154104; d) F. Weigend, R. Ahlrichs, Phys. Chem.

Chem. Phys. 2005, 7, 3297-3305; e) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.