Supplementary Materials

 $MoP_2/C@rGO$ formed by the molybdenum-based metal organic framework of the phosphating GO coating with excellent lithium ion storage performance

Jiakai Du[†], Changjian He[†], Qingmeng Li, Jiali Chai, Qianqian Zhang Bohejin Tang[#] and Yichuan Rui[#]

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China

† J. D. and C.H. contributed equally to this work.

#Corresponding author: tangbohejin@sues.edu.cn, ryc713@126.cn.

Fig.S1 C1s peak in MoP₂/C@rGO

Fig.S2 GITT curves and the corresponding Li-ion diffusion coefficient of MoP₂/C, MoP₂/C@PPy and MoP₂/C@rGO

The Li ions diffusion coefficient (D_{Li}^+) in MoP₂/C, MoP₂/C@PPy and MoP₂/C@rGo electrodes is studied by Galvanostatic Intermittent Titration Technique (GITT) measurements. The D_{Li}^+ values of discharge and charge process were calculated as the following.

$$D_{GITT} = \frac{4}{\pi \tau} \left(\frac{m_b V_M}{M_b S} \right)^2 \left(\frac{\Delta E_s}{\Delta E_t} \right)^2 \left(\tau \ll l^2 / D_{GITT} \right)$$

Where τ and **S** represent the constant current pulse duration time (s) and the area (cm³) for electrochemical reaction under current collector. **M**_b, **m**_b and **V**_M stands for molar mass (g mol⁻¹), mass (g) and molar volume (cm³ mol⁻¹) of electrode active material. Δ **E**_s and Δ **E**_t represent the change in the steady-state voltage at a single-step GITT test (V) and the total change in cell voltage during current pulse time, respectively.

Fig.S3 Nitrogen adsorption/desorption isotherms and corresponding pore size distribution curves of MoP₂/C, MoP₂/C@PPy and MoP₂/C@rGO

Samples	M ₁ (g)	M ₂ (g)	carbon contents (%)
MoP ₂ /C	1.0255	0.1015	~9.90
MoP ₂ /C@PPy	1.0255	0.1856	~18.1
MoP ₂ /C@rGO	1.0255	0.1907	~18.6

Table.S1 Carbon contents

 $M_1(g)$: the mass before acidification $M_2(g)$: the mass after acidification

As shown in **Table.S1**, carbon contents of three samples are calculated by the mass before and after acidification. The carbon contents of MoP_2/C , MoP_2/C @PPy and MoP_2/C @rGO are 9.9%, 18.1% and 18.6%, respectively,

Fig.S4 XRD patterns after cycling.

As shown in the **Fig.S4**, the XRD diffraction peaks of Mo (**PDF#88-2331**) and Li₃P (**PDF#74-1160**) appear in the discharge process along with the disappearance of the principal diffraction peak of MoP₂, which confirms that Mo and Li₃P are generated through the electrochemical reaction between the electrode material and Li. During the charging process, the XRD diffraction peaks of MoP₂ (**PDF#16-0499**) show that Li escapes from the electrode material.

Fig.S5 (a-c) CV curves of $MoP_2/C@PPy$ and MoP_2/C (0.2 to 1.0 mV s⁻¹) and (b-d) the percentage of pseudo capacitive contribution from 0.2 to 1.0 mV/s.