Supplementary Information

Small Compound - Big Colors: Synthesis and Structural Investigation of Brightly Colored Alkaline Earth Metal 1,3-Dimethylviolurates

Volker Lorenz,^a Phil Liebing,^{a,b} Matthias Müller,^c Liane Hilfert,^a Martin Feneberg,^d Elias Kluth,^d Marcel Kühling,^a Magnus R. Buchner,^c Rüdiger Goldhahn^d and Frank T. Edelmann^{d,*}

^a Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.

^b Institut für Anorganische und Analytische Chemie, Humboldtstr. 8, 07743 Jena, Germany.

^c Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.

^d Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.

Table of Contents

1. IR spectra	S3
2. NMR spectra	S 8
3. Raman spectra	S17
4. UV-vis spectra	S19

1. IR spectra of all title compounds

Figure S1. IR spectrum of [(Me₂Vio)(H₂O)] (2)

Figure S2. IR spectrum of [(Me₂Vio)(H₂O)] (2a)

Figure S3. IR spectrum of $[H_3O]^+[(Me_2Vio)(H_2O)]^-$ (2b)

Figure S4. IR spectrum of [Mg(Me₂Vio)₂(H₂O)₆] (3)

Figure S5. IR spectrum of [Ca(Me₂Vio)(H₂O)₈] (4)

Figure S6. IR spectrum of $[Sr(Me_2Vio)_2(H_2O)_6]$ (5)

Figure S7. IR spectrum of [Sr(Me₂Vio)₂(18-crown-6)] (5a)

Figure S8. IR spectrum of $[Ba(Me_2Vio)_2(H_2O)_4]$ (6)

Figure S9. IR spectrum of [Ba(Me₂Vio)(NO₂Barb)·4H₂O] (8)

2. NMR spectra of all title compounds

¹H NMR in DMSO- d_6 :

Figure S10. ¹H and ¹³C NMR spectra of original (colorless) H(Me₂Vio)·H₂O (2) in DMSO-d₆

¹H NMR in DMSO-*d*₆:

Figure S11. ¹H and ¹³C NMR spectra of orange H(Me₂Vio)·H₂O (2a) in DMSO-d₆

Figure S12. ¹H and ¹³C NMR spectra of [H₃O][Me₂Vio] (2b) in DMSO-*d*₆

Figure S13. ¹H and ¹³C NMR spectra of [Mg(H₂O)₆](Me₂Vio)₂ (3) in DMSO-d₆

Figure S14. ¹H and ¹³C NMR spectra of Ca(Me₂Vio)·8H₂O (4) in DMSO-*d*₆

Figure S15. ¹H and ¹³C NMR spectra of $Sr(Me_2Vio)_2 \cdot 6H_2O(5)$ in DMSO- d_6

Figure S16. ¹H and ¹³C NMR spectra of Sr(Me₂Vio)₂(18-crown-6) (5a) in DMSO-d₆

Figure S17. ¹H and ¹³C NMR spectra of Ba(Me₂Vio)₂·4H₂O (6) in DMSO-*d*₆

Figure S18. ¹H and ¹³C NMR spectra of Ba(Me₂Vio)(Me₂NO₂Barb)·2H₂O (8) in DMSO-d₆

3. Raman Spectra

Figure S19. Raman spectra of compounds **2-6** from bottom to top. Laser wavelength was 532 nm, the detection was unpolarized. All spectra were normalized to their respective maximum and shifted vertically for better visibility.

Figure S20. Raman peak positions for compounds **3-6** as determined from the spectra shown in Fig. S19. Only the sharp features around 700 cm⁻¹ and 1050 cm⁻¹ for **5** and **6** are shown. The results for compound **5** and **5a** are identical. A decrease of Raman shift with increasing AE atomic mass is observed (AE = Mg–Ba).

4. UV-vis Spectra

Figure S21. UV-vis spectra of compounds 2-6 in aqueous solution.