Supplementary Information

Electronic structure modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO₂ electroreduction

Xiaolin Shao^a, Xueliang Sun^a, Qiuan Huang^a, Jin Yi^a, Jiujun Zhang^a and Yuyu Liu^{a,*}

^a Department of Chemistry/Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 200444, China.

*Corresponding authors: E-mail addresses: liuyuyu@shu.edu.cn (Yuyu Liu).

Fig. S2 (a) SEM image and (b) XRD pattern of Bi_2S_3 -0.1.

Fig. S3 (a) SEM image and (b) XRD pattern of Bi_2S_3 -0.05.

Fig. S4 (a) SEM image and (b) XRD pattern of Bi_2S_3 -0.03.

Fig. S5 (a) SEM image and (b) XRD pattern of Bi_2S_3 -0.01.

Fig. S6 (a) TEM image of Bi_2S_3 -0.075-D-0.5h, (b) XRD patterns of Bi_2S_3 -0.075-D-0.5h and CP.

In Fig. S6(a), because the material was scraped off the carbon paper after the reaction, somecarbonpaperdebriswasmixed.

Fig. S7 XPS survey spectra of (a) Bi_2S_3 -0.075-D-0.5h, (b) S 2p, (c) O 1s of Bi_2S_3 -0.075-D-0.5h electrode and (d) Bi 4f of Bi_2O_3 derived electrode.

Fig. S8 XPS survey spectra of S 2p of Bi₂S₃-0.075 electrode.

Fig. S10 XPS survey spectra of (a) Bi_2S_3 -0.075-D-10h and (b) Bi 4f, (c) S 2p, (d) S 2s and (e) O 1s of Bi_2S_3 -0.075-D-10h electrode.

Fig. S11 LSV curves of CP in N_2 and CO₂ atmosphere in 0.1 M KHCO₃ at 50 mV s⁻².

Fig. S12 LSV curves of Bi_2S_3 -0.1-D, Bi_2S_3 -0.075-D, Bi_2S_3 -0.05-D, Bi_2S_3 -0.03-D to Bi_2S_3 -0.01-D in N₂-saturated and CO₂-saturated 0.1 M KHCO₃ at 50 mV s⁻².

Fig. S13 The $FE_{formate}$ of Bi_2S_3 -0.1-D, Bi_2S_3 -0.075-D, Bi_2S_3 -0.05-D, Bi_2S_3 -0.03-D and Bi_2S_3 -0.01-D electrodes at different applied potential.

Fig. S14 I-t curves of ERCO₂ over (a) Bi_2S_3 -0.075-D, (b) Bi and (d) Bi_2O_3 at different potential within 1800 s.

Fig. S15 FE of formate, CO and H_2 over (a) $Bi_2S_3(c)$ -0.075-D, (b) Bi and (c) Bi_2O_3 electrodes.

0.03-D at the range of -0.4 to -0.6 V with different scan rates in N₂-saturated 0.1 M KHCO₃ solution.

Fig. S17 CV curves of (a) Bi, (b) $Bi_2S_3(c)$ -0.075-D and (c) Bi_2O_3 at the range of -0.4 to -0.6 V with different scan rates in N₂-saturated 0.1 M KHCO₃ solution.

Fig. S18 Comparison of corresponding Cdl of Bi_2S_3 -0.1-D, Bi_2S_3 -0.075-D, Bi_2S_3 -0.05-D and Bi_2S_3 -0.03-D samples.

Fig. S19 EIS measurements of Bi_2S_3 -0.1-D, Bi_2S_3 -0.075-D, Bi_2S_3 -0.05-D and Bi_2S_3 -0.03-D samples at the potential of $-1.09V_{RHE}$.

Fig. S20 Bode plots of (a) real part and (h) imaginary part of complex capacitance with respect to frequency of Bi_2S_3 -0.075-D, Bi_2O_3 and Bi samples.

Sample	Bi : S: O (atomic rate)
Bi_2S_3	1:1.47
Bi ₂ S ₃ -0.075-D-0.5h	1:10.24:11.28
Bi ₂ S ₃ (c)-0.075-D-0.5h	1:20.87:6.76
Bi ₂ S ₃ -0.075-D-10h	1:10.09:10.35

Table S1 Atomic ratio of Bi to S in different materials.

Catalysts	Bi_2S_3	Bi ₂ S ₃ -0.075-D-0.5h	Bi ₂ S ₃ (c)-0.075-D-0.5h	Bi ₂ S ₃ -0.075-D-10h	Bi ₂ O ₃ -D
А	574912.	2536.52	-	1466.67	-
Bi3+	88				
4f7/2(Bi2S3)					
A	424810.	1903.91	-	1052.90	-
Bi3+	24				
4f5/2(Bi2S3)					
А	-	19328.47	30788.72	54715.12	65338.93
Bi3+					
4f7/2(Bi2O3)					
A	-	14291.91	22414.77	40026.79	48735.22
Bi3+					
4f5/2(Bi2O3)					
А	-	2119.97	3091.30	1582.9	4331.67
Bi0 4f7/2					
A	-	1571.28	2373.81	1194.17	3124.51
Bi0 4f5/2					

Table S2 Peak area parameters of XPS spectrum for Bi 4f of different catalysts.

Catalysts	ECSA(cm ²)
Bi ₂ S ₃ -0.075	6.925
Bi	4.06
Bi ₂ O ₃	6.05

Table S3 The electrochemical active surface area of different catalysts.

Catalyst	Electrolyte	Potential	J	FE _{formate}	Ref.
		(V vs. RHE)	$(mA cm^{-2})$	(%)	
Defect-rich Bi	0.5 M	-0.75	5	84	1
(derived from Bi ₂ S ₃)	NaHCO ₃				
Bi with rich	0.5 M KHCO ₃	-1.0	6.6	80	2
Bi-O bond					
(derived from)					
Bi_2S_3	0.1 M KHCO ₃	-0.9	4	90.1	3
Bi ₂ O ₃ @rGO					
S doped BiOC	0.5 M KHCO ₃	-0.9	30	96.7	4
Bi	0.5 M KHCO ₃	-0.83	55	86	5
nanoparticles	-				
β -Bi ₂ O ₃	0.1 M KHCO ₃	-1.2	20.9	87	6
Bi nanosheets	0.1 M KHCO ₃	-1.36	210	88.1	7
	(flow cell)				
Bi/Bi ₂ O ₃	0.5 M KHCO ₃	-0.9	18	85	8
nanoparticles Bi Dondrite		_0.74	2.2	80	9
DI Dellame	$0.5 \text{ M KHC} 0_3$	-0.74	5.2	09	
Bi nanosheets	0.1 M KHCO ₃	-1.1	17	86.0	10
S and O co-	0.1 M KHCO ₃	-1.09	9	89.7	This
doping Bi					work

Table S4 The performance of CO_2 electroreduction to formate over Bi-based catalysts reported recently.

References

- 1. Y. Zhang, F. W. Li, X. L. Zhang, T. Williams, C. D. Easton, A. M. Bond and J. Zhang, *J. Mater. Chem. A*, 2018, **6**, 4714-4720.
- 2. Y. T. Wang, L. Cheng, J. Z. Liu, C. Q. Xiao, B. Zhang, Q. H. Xiong, T. Zhang, Z. L. Jiang, H. Jiang, Y. H. Zhu, Y. H. Li and C. Z. Li, *Chemelectrochem*, 2020, **7**, 2864-2868.
- 3. X. Yang, P. Deng, D. Liu, S. Zhao, D. Li, H. Wu, Y. Ma, B. Y. Xia, M. Li, C. Xiao and S. Ding, *J. Mater. Chem. A*, 2020, **8**, 2472-2480.
- 4. J. Wang, J. Mao, X. Zheng, Y. Zhou and Q. Xu, *Appl. Surf. Sci.*, 2021, **562**, 150197.
- 5. W. Dan, W. Xuewan, F. Xian-Zhu and L. Jing-Li, *Appl. Catal. B-Environ.*, 2021, **284**, 119723.
- 6. T.-P. Thanh, R. Daiyan, Z. Fusco, Z. Ma, R. Amal and A. Tricoli, *Adv. Funct. Mater.*, 2020, **30**, 1906478.
- 7. J. Yang, X. L. Wang, Y. T. Qu, X. Wang, H. Huo, Q. K. Fan, J. Wang, L. M. Yang and Y. E. Wu, *Adv. Energy Mater.*, 2020, **10**, 2001709.
- 8. J. J. Sun, W. Z. Zheng, S. L. Lyu, F. He, B. Yang, Z. J. Li, L. C. Lei and Y. Hou, *Chin. Chem. Lett.*, 2020, **31**, 1415-1421.
- J. H. Koh, D. H. Won, T. Eom, N. K. Kim, K. D. Jung, H. Kim, Y. J. Hwang and B. K. Min, ACS Catal., 2017, 7, 5071-5077.
- 10. W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma, J. Liu and Z. Jin, *Nano Energy*, 2018, **53**, 808-816.