S-scheme α -Fe₂O₃/Cu₂O photocatalyst for enhanced primary amine

oxidative coupling reaction under visible light

Zhen Li^{a,b,1}, Shan Ye^{a,1}, Ping Qiu^a, Xiaoyuan Liao^a, Yue Yao^a, Jingzhao Zhang^c, Yan Jiang^a and Shuxiang

Lu^{a,b,*}

Fig. S1 Survey of XPS.

The transfer process of electron-hole pairs is further determined by analyzing the band positions of α -Fe₂O₃ and Cu₂O semiconductors. Fig. S2 is the K-M function calculation of the UV-Vis diffuse reflectance spectra of pure α -Fe₂O₃ and Cu₂O. In the figure, the intercept between the tangent line and the abscissa is the semiconductor band gap (Eg). The band gaps of α -Fe₂O₃ and Cu₂O are 1.98 eV and 1.85 eV, respectively.

From Fig. S3a and S3b, the valence band potential can be estimated to be 2.09 and 0.14 eV ^[1,2], and combined with the band gap results, the conduction band potential can be obtained to be 0.11 and -1.71 eV, respectively, using the band gap formula (Eg = $E_{VB} - E_{CB}$). It can be clearly seen that the energy of α -Fe₂O₃ and Cu₂O overlap, so they can form an effective Z-scheme structure.

Fig. S4 UV-vis diffuse reflectance spectra of $\alpha\text{-}\text{Fe}_2\text{O}_3$ and $\alpha\text{-}\text{Fe}_2\text{O}_3/\text{Cu}_2\text{O}$ composite.

Fig. S5 PL spectra of α -Fe₂O₃ and α -Fe₂O₃/Cu₂O composite.

Fig. S6 Transient photocurrent density of α -Fe₂O₃ and α -Fe₂O₃/Cu₂O composite.

Fig. S7 EIS Nyquist plots of α -Fe₂O₃ and α -Fe₂O₃/Cu₂O composite.

Fig. S8 Bode phase plots of α -Fe₂O₃ and α -Fe₂O₃/Cu₂O composite.

Fig. S9 SEM of α -Fe₂O₃/Cu₂O composite after the photocatalytic reactions.

Entry	Substrate	Product	Yield [%]	Selectivity [%]
1	CI NH2		35.8	48.5
2			32.3	39.4
3	CI NH2		29.1	33.4
4	F NH2	P P P P P P P P P P P P P P P P P P P	29.1	40.9

Table S1. Oxidative coupling of primary amines with electron-withdrawing group in $\alpha\text{-}Fe_2O_3/Cu_2O$

Entry	catalyst	Yield [%]	Selectivity [%]	H_2 rate [µmol g ⁻¹ h ⁻¹]
1	α-Fe ₂ O ₃ /Cu ₂ O	69.3	89.7	1.2
2	no catalyst	5.8	10.3	0.1
3	dark	4.9	8.7	0.1
4	α-Fe ₂ O ₃	9.8	16.8	0.3
5	Cu ₂ O	19.1	30.4	0.5

Table S2. The catalytic activity of photocatalyst in benzylamine oxidation coupled with hydrogen production

Fig. S10 DFT calculation results of $\alpha\text{-}\text{Fe}_2\text{O}_3$ and Cu_2O

Fig. S11 Redox exploration diagram of primary amine oxidative coupling reaction $\ensuremath{^{[3]}}$

Table 33. The AQL of all eyog cuyo under unrelent light in adiation

Wavelength (nm)	AQE (%)
450 nm	0.134
520 nm	0.124
600 nm	0.123

Fig. S12 The TEM of photodeposition of composite materials $\ensuremath{^{[4]}}$

Table S4. Effect of different particle sizes on oxidative coupling reaction of primary amine

Entry	Size (nm)	Yield [%]	Selectivity [%]
1	300	69.3	89.7
2	400	53.8	72.3

Table S5. Effects of different light intensities on oxidative coupling of primary amines

Entry	Power [W]	Yield [%]	Selectivity [%]
1	5	3.4	10.2
2	20	46.7	67.2
3	50	69.3	89.7

References

[1] D. Zhu and Q. Zhou, Appl. Catal. B-Environ., 2019, 19, 118426-118436.

[2] J. Liu, W. Lu, Q. Zhong, X. Jin, L. Wei, H. Wu, X. Zhang, L. Li and Z. Wang, Mol. Catal., 2017, 433, 354-362.

[3] M. Fukui, A. Tanaka, H. Kominami, ChemCatChem, 2020, 12, 3298-3305.

[4] Y. Peng, A. Rendón-Patiño, A. Franconetti, J. Albero, A. Primo, H. García, ACS Appl. Energ. Mater., 2020, 3, 6623-6632.