Electronic Supporting Information Materials

A new class of nickel(II) oxyquinoline-bipyridine complexes as potent anticancer agents induces apoptosis and autophagy in A549/DDP tumor cells through mitophagy pathways

Zhen-Feng Wang,^{a,b} Qiao-Chang Wei,^c Jin-Xian Li,^c Zhen Zhou,^{*c} and Shu-Hua Zhang^{*a,b}

complexes	Ni1	Ni2	Ni3	Ni4	Ni5
Formula	$C_{34}H_{24}Cl_4N_4NiO_2$	C45H32Cl4N4NiO3	C ₃₀ H ₂₂ Cl ₂ N ₄ NiO ₄	$C_{34}H_{24}Cl_4N_4NiO_2$	$C_{32}H_{24}Cl_4N_4NiO_2$
Formula weight	721.08	877.24	632.12	721.08	697.06
Temperature/K	150.0	150.15	293(2)	293(2)	150.0
Crystal system	triclinic	monoclinic	orthorhombic	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁	Pbcn	<i>P</i> -1	<i>P</i> -1
a/Å	9.375(1)	14.3136(3)	15.894(1)	10.612(1)	8.9012(2)
<i>b</i> /Å	12.701(1)	15.6216(3)	9.851(1)	10.649(1)	11.3885(2)
c/Å	14.455(1)	17.4536(4)	18.155(1)	15.429(1)	15.2431(3)
a/°	82.985(3)	90	90	89.319(2)	77.0354(7)
β°	80.795(3)	96.765(1)	90	73.567(2)	86.1617(8)
γ/°	76.224(3)	90	90	70.849(2)	75.3260(8)
Volume/Å ³	1643.9(2)	3875.48(14)	2842.5(2)	1573.4(2)	1456.62(5)
Ζ	2	2	4	2	2
$ ho_{ m calc}{ m g/cm^3}$	1.457	1.504	1.477	1.522	1.589
μ/mm^{-1}	0.953	3.653	0.914	0.995	4.656
<i>F</i> (000)	736.0	1800	1296	736	712
Crystal size/mm	$0.36 \times 0.29 \times 0.16$	$0.26 \times 0.21 \times 0.12$	$2.0.13 \times 0.09 \times 0.07$	$0.26 \times 0.21 \times 0.14$	$0.35 \times 0.26 \times 0.14$
λ/Å	0.71073	1.54178	0.71073	0.71073	1.54178
2θ range /°	4.188 to 53.264	5.098 to 149.372	6.62 to 55.08	5.90 to 55.04	5.95 to 149.788
Ref. meas./Indep.	45463,6804	21163,12711	42013,3272	33634, 7227	15179, 5868
R _{int}	0.0665,	0.0262	0.1405	0.0561	0.0327
$R_{ m sigma}$	0.0416	0.0432	0.0731	0.0611	0.0446
Goof	1.069	1.002	1.035	1.029	1.075
$R_1 \left[I \ge 2\sigma \left(I\right)\right]^{\rm a}$	0.0453	0.0618	0.0676	0.0480	0.0612
wR_2 [all data] ^b	0.1057	0.1556	0.1466	0.1319	0.1631
$\Delta \rho(\text{max, min})/e \text{ Å}^{-3}$	0.37/-0.28	0.566/-0.223	0.582/-0.456	0.509/-0.592	0.674/-0.384

Table S1. Crystal data and structure refinement details for Ni1-Ni5.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|;$ ^b $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{\frac{1}{2}}.$

complexes	Ni6	Ni7	Ni8	Ni9	Ni10
Formula	C ₃₀ H ₂₄ N ₄ NiO ₆	C33H28N4NiO5	$\mathrm{C}_{31}\mathrm{H}_{24}\mathrm{N}_4\mathrm{NiO}_5$	$\mathrm{C}_{30}\mathrm{H}_{24}\mathrm{N}_4\mathrm{NiO}_4$	C43H32N4NiO5
Formula weight	595.22	619.30	591.25	563.22	743.43
Temperature/K	298(2)	298(2)	293(2)	293(2)	298(2)
Crystal system	monoclinic	triclinic	triclinic	triclinic	monoclinic
Space group	<i>C</i> 2/c	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_1/n$
a/Å	18.9427(10)	10.6007(8)	10.442(2)	8.823(1)	16.869(4)
<i>b</i> /Å	9.0321(6)	11.7034(10)	10.492(2)	10.996(1)	11.170(2)
c/Å	31.3833(15)	12.3657(9)	12.933(2)	14.068(1)	20.248(4)
α/°	90.00	85.752(6)	96.981(6)	94.630(5)	90.00
$\beta/^{\circ}$	90.266(5)	75.849(6)	90.412(6)	104.322(5)	112.069(6)
γ/°	90.00	76.634(7)	107.475(6)	96.494(5)	90.00
Volume/Å ³	5369.4(5)	1447.04(19)	1340.1(4)	1305.55(14)	3535.9(13)
Ζ	8	2	2	2	4
$ ho_{ m calc}{ m g/cm^3}$	1.473	1.421	1.465	1.433	1.397
μ/mm^{-1}	0.775	0.720	0.773	0.771	0.602
<i>F</i> (000)	2464.0	644.0	612.0	536	1544.0
Crystal size/mm	$0.22 \times 0.17 \times 0.11$	$0.25 \times 0.12 \times 0.08$	$0.26 \times 0.21 \times 0.13$	$0.25 \times 0.22 \times 0.18$	$0.25 \times 0.16 \times 0.11$
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073
2θ range /°	6.76 to 50.02	6.80 to 50.2	6.354 to 55.026	6.66 to 58.564	6.06 to 50.2
Ref. meas./Indep.	15311,4732	9161, 5131	28336,6154	9591	47087,6289
R _{int}	0.0673	0.0256,	0.0591	5984	0.0443
R _{sigma}	0.0752	0.0531	0.0671	0.0342	0.0290
Goof	1.001	1.005	1.014	0.0739	0.995
$R_1 \left[I \ge 2\sigma \left(I\right)\right]^{\rm a}$	0.061	0.0442	0.0482	0.0547	0.0335
wR_2 [all data] ^b	0.1645	0.1005	0.1017	0.1339	0.0916
$\Delta \rho(\text{max, min})/e \text{ Å}^{-3}$	0.608/-0.496	0.332/-0.425	0.342/-0.289	0.623/-0.640	0.245/-0.282

 Table S2. Crystal data and structure refinement details for Ni6-Ni10.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{\frac{1}{2}}$.

|--|

complexes	Ni11	Ni12	Ni13	Ni14	Ni15
Formula	$C_{30.25}H_{18.75}Cl_2N_4NiO_{4.25}$	C ₂₈ H ₂₀ N ₄ NiO ₄	$C_{42}H_{24}I_4N_4NiO_2$	C46H36Cl4N4NiO4	C _{32.5} H _{31.5} Cl ₄ N ₄ NiO _{4.5}
Formula weight	635.85	535.19	1182.98	909.31	750.63
Temperature/K	298(2)	273.15	293(2)	150.0	150(2)
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	Pbca	$P2_1/c$	$P2_1/c$	<i>P</i> -1
a/Å	10.3453(5)	14.859(3)	11.0868(3)	19.181(1)	10.507(6)
b/Å	31.1403(14)	10.639(2)	23.1713(8)	15.320(1)	12.004(7)

c/Å	16.4048(8)	29.850(5)	15.8154(5)	14.774(1)	13.598(6)		
a/°	90.00	90	90	90	78.615(16)		
$\beta/^{\circ}$	93.229(2)	90	107.8680(10)	110.760(2)	73.00(2)		
$\gamma^{/\circ}$	90.00	90	90	90	86.013(18)		
Volume/Å ³	5276.5(4)	4718.8(14)	3866.9(2)	4059.6(3)	1607.6(15)		
Ζ	4	8	4	4	2		
$ ho_{ m calc}{ m g/cm^3}$	1.601	1.507	2.032	1.488	1.551		
μ/mm^{-1}	0.986	0.867	3.737	0.792	0.983		
<i>F</i> (000)	2594.0	2208.0	2240.0	1872.0	773.0		
Current al a interview	0.27 × 0.22 × 0.17	$0.26 \times 0.21 \times 0.24 \times 0.21 \times 0.120.26 \times 0.21 \times 0.150.26 \times 0.21 \times 0.15$					
	0.27 ~ 0.22 ~ 0.17	0.05	0.24 ~ 0.21 ~ 0.12	.30 ^ 0.21 ^ 0.13 0.30 ^ 0.21 × 0.13			
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073		
2θ range /°	5.8 to 50.2	6.11 to 55.892	5.872 to 55.124	4.022 to 52.792	4.06 to 50.02		
Ref. meas./Indep.	96187,9384	71898,5547	61402,8928	66978,8295	30494, 5665		
$R_{\rm int}$	0.1081	0.1166	0.0458	0.0891	0.0959		
$R_{ m sigma}$	0.0657	0.0712	0.0364	0.0437	0.0636		
Goof	0.996	1.019	1.017	1.097	1.005		
$R_1 \left[I \ge 2\sigma \left(I\right)\right]^{\rm a}$	0.0479	0.0499	0.0432	0.0524	0.0557		
wR_2 [all data] ^b	0.1019	0.0970	0.1000	0.1353	0.1714		
$\Delta \rho(\text{max, min})/e \text{ Å}^{-3}$	0.44/-0.30	0.27/-0.32	2.48/-2.13	0.47/-0.57	1.370/0.628		

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|;$ ^b $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{\frac{1}{2}}.$

Table S4. Crystal	data and	structure refinement	details	for Ni16-Ni19

Table S4. Crystal data and structure refinement details for Ni16-Ni19.						
complexes	Ni16	Ni17	Ni18	Ni19		
Formula	C _{31.5} H ₂₂ Cl ₄ N ₄ NiO _{3.5}	$C_{28}H_{16}Cl_2I_2N_4NiO_2$	$C_{37}H_{36}Cl_2I_2N_4NiO_3$	C ₃₅ H ₃₆ N ₄ NiO ₅		
Formula weight	713.04	823.86	968.11	651.39		
Temperature/K	150.15	150.15	150.0	150.0		
Crystal system	triclinic	orthorhombic	orthorhombic	monoclinic		
Space group	<i>P</i> -1	Pbca	Pbcn	$P2_{1}/n$		
a/Å	12.6484(8)	15.3688(4)	27.0578(7)	11.7481(4)		
b/Å	20.5153(15)	16.0251(3)	11.1058(3)	21.2938(8)		
c/Å	23.4843(17)	22.4547(6)	24.7350(7)	12.5553(4)		
$\alpha/^{\circ}$	98.674(3)	90	90	90		
$\beta/^{\circ}$	92.536(2)	90	90	92.0463(15)		
γ/°	95.017(2)	90	90	90		
Volume/Å ³	5990.8(7)	5530.3(2)	7432.8(3)	3138.85(19)		
Ζ	2	8	8	4		
$ ho_{ m calc}{ m g/cm^3}$	1.581	1.979	1.730	1.378		
μ/mm^{-1}	1.048	3.162	2.369	0.667		
<i>F</i> (000)	2904.0	3168.0	3824.0	1368.0		

Crystal size/mm	$0.36 \times 0.26 \times 0.18$	$0.35 \times 0.25 \times 0.12$	$0.36 \times 0.21 \times 0.14$	$0.34 \times 0.25 \times 0.18$
λ/Å	0.71073	0.71073	0.71073	0.71073
2θ range /°	3.77 to 52.8	4.10 to 52.78	4.29 to 52.74	4.66 to 50.20
Ref. meas./Indep.	130866,24472	95667, 5647	80300,7591	73248,5556
$R_{\rm int}$	0.1054	0.0792	0.1208	0.0756
$R_{ m sigma}$	0.0694	0.0253	0.0511	0.0274
Goof	1.047	1.059	1.228	1.004
$R_1 \left[I \ge 2\sigma \left(I\right)\right]^{\rm a}$	0.0587	0.0519	0.0708	0.0526
wR_2 [all data] ^b	0.1572	0.1458	0.1524	0.1349
$\Delta \rho(\text{max, min})/e \text{ Å}^{-3}$	0.852/-0.452	1.424/-1.102	0.718/-1.093	0.490/-0.642

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{\frac{1}{2}}$.

Table S5. Crystal data and structure refinement details for Ni	20-Ni22.
--	----------

complexes	Ni20	Ni21	Ni22
Formula	$C_{30}H_{26}Cl_2N_4NiO_4$	$C_{32}H_{30}Cl_2N_4NiO_4$	$C_{32}H_{30}Cl_2N_4NiO_6$
Formula weight	636.16	664.21	696.21
Temperature/K	293(2)	293(2)	293(2)
Crystal system	orthorhombic	triclinic	triclinic
Space group	Pbcn	<i>P</i> -1	<i>P</i> -1
a/Å	15.942(3)	10.6177(5)	10.482(2)
b/Å	9.5116(15)	11.7231(5)	11.840(3)
c/Å	18.694(3)	13.7986(6)	14.351(3)
α/°	90	87.0040(10)	89.092(7)
$\beta/^{\circ}$	90	71.3220(10)	72.122(7)
γ/°	90	71.0630(10)	69.927(7)
Volume/Å ³	2834.6(8)	1536.46(12)	1584.1(6)
Ζ	4	2	2
$ ho_{ m calc}{ m g/cm^3}$	1.491	1.436	1.460
μ/mm^{-1}	0.917	0.849	0.832
<i>F</i> (000)	1312.0	688.0	720.0
Crystal size/mm	$0.26 \times 0.21 \times 0.14$	$0.32 \times 0.22 \times 0.11$	$0.30 \times 0.22 \times 0.10$
λ/ Å	0.71073	0.71073	0.71073
2θ range /°	6.62 to 55.11	6.056 to 55.058	6.04 to 54.968
Ref. meas./Indep.	41773,3265	30530,7051	33159,7257
R _{int}	0.1012	0.0472	0.0376
R _{sigma}	0.0521	0.0530	0.0378
Goof	1.004	1.019	1.028
$R_1 \left[I \ge 2\sigma \left(I\right)\right]^{\rm a}$	0.0589	0.0465	0.0433
wR_2 [all data] ^b	0.1513	0.1088	0.1078
$\Delta \rho(\max, \min)/e \text{ Å}^{-3}$	0.761/-0.408	0.316/-0.280	0.574/-0.626

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|;$ ^b $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{\frac{1}{2}}.$

complexes	Atom	Atom	Length/Å	Atom	Atom	Length/Å
	Ni1	01	2.0161(19)	Ni1	N2	2.159(2)
Ni1	Ni1	02	2.0245(19)	Ni1	N4	2.093(2)
	Ni1	N3	2.074(2)	Ni1	N1	2.192(2)
	Ni2	O4	2.032(5)	Ni1	N3	2.089(6)
	Ni2	03	2.012(5)	Ni1	O1	2.016(6)
NEO	Ni2	N7	2.098(5)	Ni1	N2	2.162(6)
INIZ	Ni2	N5	2.188(6)	Ni1	N4	2.061(5)
	Ni2	N6	2.162(6)	Ni1	O2	2.013(5)
	Ni2	N8	2.084(6)	Ni1	N1	2.158(6)
	Ni1	O1 ¹	2.037(2)	Ni1	N1	2.077(3)
Ni3	Ni1	01	2.037(2)	Ni1	N2	2.100(3)
	Ni1	N1 ¹	2.077(3)	Ni1	N21	2.100(3)
	Ni1	01	1.9776(18)	Ni1	N1	2.183(2)
Ni4	Ni1	O2	1.9782(18)	Ni1	N4	2.186(2)
	Nil	N3	2.330(2)	Ni1	N2	2.139(2)
	Ni1	01	2.0246(16)	Ni1	N4	2.099(2)
Ni5	Ni1	N3	2.105(2)	Ni1	N1	2.158(2)
	Ni1	02	2.0338(16)	Ni1	N2	2.164(2)
	Ni1	05	2.071(3)	Ni1	N4	2.090(3)
Ni6	Ni1	N3	2.075(4)	Ni1	N2	2.098(3)
	Nil	O3	2.086(3)	Ni1	N1	2.109(3)
	Ni1	01	2.0532(19)	Ni1	N3	2.085(2)
Ni7	Ni1	O4	2.073(2)	Ni1	N2	2.087(2)
	Ni1	N1	2.076(2)	Ni1	N4	2.100(2)
	Ni1	01	2.0708(17)	Ni1	N7	2.0906(19)
Ni8	Ni1	O3	2.0572(17)	Ni1	N9	2.1085(19)
	Nil	N6	2.1061(19)	Ni1	N13	2.078(2)
	Ni1	02	2.0595(19)	Ni1	N2	2.086(2)
Ni9	Ni1	03	2.069(2)	Ni1	N3	2.085(2)
	Ni1	N1	2.103(2)	Ni1	N4	2.084(2)
	Nil	01	2.0639(14)	Ni1	N2	2.0817(17)
Ni10	Ni1	03	2.0731(15)	Ni1	N3	2.0951(17)
11110	Ni1	N1	2.0790(17)	Ni1	N4	2.1018(17)
	Ni1	O3	2.051(2)	Ni1	N4	2.082(3)
Ni11	Ni1	01	2.067(2)	Ni1	N1	2.113(3)

Table S6. Selected bond lengths (Å) for Ni1-Ni22.

	Ni1	N3	2.081(3)	Ni1	N2	2.119(3)
	Ni1	O2	2.0765(18)	Ni1	N4	2.092(2)
Ni12	Ni1	O3	2.0635(18)	Ni1	N3	2.085(2)
	Ni1	N2	2.073(2)	Ni1	N1	2.112(2)
	Ni1	O2	2.049(3)	Ni1	N1	2.085(4)
Ni13	Ni1	01	2.058(3)	Ni1	N2	2.068(4)
	Ni1	N3	2.099(4)	Ni1	N4	2.098(4)
	Ni1	O1	2.064(2)	Ni1	N1	2.093(2)
Ni14	Ni1	O2	2.033(2)	Ni1	N3	2.134(2)
	Ni1	N4	2.141(2)	Ni1	N2	2.099(2)
	Ni1	N2	2.067(4)	Ni1	O2	2.078(3)
Ni15	Ni1	O1	2.070(3)	Ni1	N4	2.081(4)
	Ni1	N3	2.078(4)	Ni1	N1	2.089(4)
	Ni3	O5	2.049(3)	Ni2	N6	2.063(4)
	Ni3	O6	2.059(3)	Ni2	N7	2.091(4)
	Ni3	N9	2.069(4)	Ni2	N5	2.067(4)
	Ni3	N11	2.102(4)	Ni2	O4	2.049(3)
Ni16	Ni3	N12	2.086(4)	Ni2	O3	2.061(3)
	Ni3	N10	2.071(4)	Ni2	N8	2.078(4)
	Ni1	01	2.062(3)	Ni4	07	2.069(3)
	Ni1	N4	2.084(3)	Ni4	08	2.059(3)
	Ni1	O2	2.043(3)	Ni4	N13	2.062(4)
	Ni1	N1	2.068(4)	Ni4	N16	2.075(3)
	Ni1	N2	2.073(4)	Ni4	N14	2.059(3)
	Ni1	N3	2.082(4)	Ni4	N15	2.084(4)
	Ni1	01	2.038(4)	Ni1	O2	2.046(4)
Ni17	Ni1	N3	2.081(5)	Ni1	N1	2.084(5)
	Ni1	N4	2.068(5)	Ni1	N2	2.077(5)
	Ni1	01	2.083(5)	Ni1	N1	2.069(6)
Ni18	Ni1	O2	2.058(5)	Ni1	N3	2.093(6)
	Ni1	N2	2.077(6)	Ni1	N4	2.063(6)
	Ni1	O2	2.0237(18)	Ni1	N3	2.095(2)
Ni19	Ni1	O1	2.0152(18)	Ni1	N1	2.168(2)
	Ni1	N4	2.114(2)	Ni1	N2	2.145(2)
	Ni1	O1 ¹	2.037(2)	Ni1	N2	2.087(3)
Ni20	Ni1	01	2.037(2)	Ni1	N1	2.080(3)
	Ni1	N2 ¹	2.087(3)	Ni1	N1 ¹	2.080(3)
NI:01	Ni1	O2	2.0467(17)	Ni1	N1	2.083(2)
	Ni1	O1	2.0466(17)	Ni1	N3	2.070(2)

	Ni1	N4	2.0905(19)	Ni1	N2	2.073(2)
	Ni1	O5	2.0516(16)	Ni1	N3	2.0640(18)
Ni22	Ni1	O4	2.0584(17)	Ni1	N1	2.0776(19)
	Ni1	N4	2.0928(18)	Ni1	N2	2.0852(19)

Symmetry codes: (1) 1-x, y,1/2-z for Ni3; (1) 1-x,+y,3/2- z for Ni20

Table S7. Selected bond angles (°) for Ni1.

Complexes	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
	01	Ni1	O2	177.44(7)	O2	Ni1	N1	97.83(8)
	01	Ni1	N3	90.87(8)	N3	Ni1	N2	168.13(8)
	01	Ni1	N2	100.04(8)	N3	Ni1	N4	79.51(9)
NI:1	01	Ni1	N4	95.34(8)	N3	Ni1	N1	96.76(8)
INII	01	Ni1	N1	79.62(8)	N2	Ni1	N1	89.86(8)
	02	Ni1	N3	89.18(8)	N4	Ni1	N2	94.71(8)
	02	Ni1	N2	80.13(8)	N4	Ni1	N1	173.74(9)
	02	Ni1	N4	87.19(8)				
	04	Ni2	N7	92.5(2)	N3	Ni1	N2	167.8(2)
	O4	Ni2	N5	104.7(2)	N3	Ni1	N1	98.9(2)
	04	Ni2	N6	79.9(2)	01	Ni1	N3	86.9(2)
	04	Ni2	N8	87.6(2)	01	Ni1	N2	102.7(2)
	03	Ni2	O4	174.9(2)	01	Ni1	N4	89.3(2)
	03	Ni2	N7	82.7(2)	01	Ni1	N1	80.7(3)
	03	Ni2	N5	79.6(2)	N4	Ni1	N3	79.3(2)
Ni2	03	Ni2	N6	102.4(2)	N4	Ni1	N2	93.1(2)
	03	Ni2	N8	89.6(2)	N4	Ni1	N1	170.0(3)
	N7	Ni2	N5	159.6(2)	O2	Ni1	N3	89.3(2)
	N7	Ni2	N6	95.8(2)	O2	Ni1	O1	175.2(2)
	N6	Ni2	N5	97.8(2)	O2	Ni1	N2	80.7(2)
	N8	Ni2	N7	78.6(2)	O2	Ni1	N4	87.2(2)
	N8	Ni2	N5	91.2(2)	O2	Ni1	N1	102.7(3)
	N8	Ni2	N6	166.1(2)	N1	Ni1	N2	90.2(2)
	O1 ⁱ	Ni1	01	96.87(14)	01	Ni1	N2	92.53(11)
	01	Ni1	$N1^{i}$	94.50(12)	$N1^{i}$	Ni1	N1	173.12(18)
	01	Ni1	N1	80.91(12)	$N1^{i}$	Ni1	N2 ⁱ	93.77(12)
NI;2	O1 ⁱ	Ni1	$N1^{i}$	80.90(12)	N1	Ni1	N2	93.77(12)
1413	O1 ⁱ	Ni1	N1	94.50(12)	N1	Ni1	N2 ⁱ	91.54(12)
	O1 ⁱ	Ni1	N2	168.35(11)	$N1^{i}$	Ni1	N2	91.54(12)
	01	Ni1	$N2^i$	168.35(11)	N2	Ni1	N2 ⁱ	79.06(16)
	O1 ⁱ	Ni1	N2 ⁱ	92.53(11)				

	01	Ni1	02	176.59(7)	02	Ni1	N2	89.37(8)
	01	Ni1	N3	77.39(8)	N1	Ni1	N3	159.59(8)
	01	Ni1	N1	82.22(8)	N1	Ni1	N4	103.87(8)
NG/	01	Ni1	N4	103.20(8)	N4	Ni1	N3	81.73(8)
1114	01	Ni1	N2	87.34(8)	N2	Ni1	N3	99.52(8)
	02	Ni1	N3	104.05(8)	N2	Ni1	N1	78.64(9)
	02	Ni1	N1	96.28(8)	N2	Ni1	N4	169.37(9)
	02	Ni1	N4	80.11(8)				
	02	Ni1	N4	90.13(7)	01	Ni1	N3	91.33(7)
	O2	Ni1	N1	100.75(8)	O1	Ni1	02	178.33(7)
	O2	Ni1	N2	80.09(7)	O1	Ni1	N4	88.71(7)
N:5	N4	Ni1	N3	78.11(8)	O1	Ni1	N1	80.24(7)
1112	N4	Ni1	N1	166.60(8)	01	Ni1	N2	101.11(7)
	N4	Ni1	N2	90.37(8)	N3	Ni1	N1	94.47(8)
	N1	Ni1	N2	99.14(8)	N3	Ni1	N2	162.90(8)
	O2	Ni1	N3	87.26(7)				
	05	Ni1	N3	90.00(14)	O3	Ni1	N2	92.98(13)
	05	Ni1	O3	166.61(12)	N4	Ni1	N2	92.68(13)
	N3	Ni1	O3	80.37(14)	05	Ni1	N1	89.83(14)
N:C	05	Ni1	N4	80.55(13)	N3	Ni1	N1	94.09(14)
INIO	N3	Ni1	N4	97.43(14)	O3	Ni1	N1	100.06(14)
	03	Ni1	N4	91.42(14)	N4	Ni1	N1	164.95(15)
	05	Ni1	N2	98.05(14)	N2	Ni1	N1	77.15(13)
	N3	Ni1	N2	168.01(14)				
	01	Ni1	04	168.36(7)	N1	Ni1	N2	96.27(9)
	01	Ni1	N1	90.87(9)	N3	Ni1	N2	91.68(8)
	O4	Ni1	N1	80.56(9)	O1	Ni1	N4	92.80(8)
N1:7	01	Ni1	N3	97.34(8)	O4	Ni1	N4	95.65(9)
1817	O4	Ni1	N3	92.16(9)	N1	Ni1	N4	94.23(9)
	N1	Ni1	N3	169.40(9)	N3	Ni1	N4	78.75(9)
	01	Ni1	N2	80.63(9)	N2	Ni1	N4	167.68(9)
	O4	Ni1	N2	92.42(9)				
	01	Ni1	N6	92.28(7)	O3	Ni1	N13	90.70(8)
	01	Ni1	N7	91.05(7)	N6	Ni1	N9	78.97(8)
	01	Ni1	N9	95.77(7)	N7	Ni1	N6	93.47(7)
NI:O	01	Ni1	N13	80.39(8)	N7	Ni1	N9	169.98(8)
INIð	O3	Ni1	01	167.18(7)	N13	Ni1	N6	166.68(8)
	O3	Ni1	N6	98.18(7)	N13	Ni1	N7	97.75(8)
	O3	Ni1	N7	80.98(7)	N13	Nil	N9	90.64(8)
	O3	Nil	N9	93.50(7)				

	02	Ni1	O3	166.41(8)	03	Ni1	N4	80.19(9)
	02	Ni1	N1	89.85(8)	N2	Ni1	N1	77.74(9)
	O2	Ni1	N2	99.67(8)	N3	Ni1	N1	164.84(9)
NĽO	02	Ni1	N3	80.51(8)	N3	Ni1	N2	92.29(9)
NI9	02	Ni1	N4	90.14(9)	N4	Ni1	N1	93.03(9)
	03	Ni1	N1	100.11(9)	N4	Ni1	N2	166.41(10)
	03	Ni1	N2	91.52(9)	N4	Ni1	N3	98.62(9)
	03	Ni1	N3	91.45(9)				
	01	Ni1	O3	168.84(6)	N1	Ni1	N3	170.22(6)
	01	Ni1	N1	80.97(6)	N2	Ni1	N3	92.23(6)
	O3	Ni1	N1	91.57(6)	O1	Ni1	N4	93.65(6)
N: 10	01	Ni1	N2	91.93(6)	O3	Ni1	N4	94.94(6)
NIIU	O3	Ni1	N2	80.71(6)	N1	Ni1	N4	92.28(6)
	N1	Ni1	N2	97.16(6)	N2	Ni1	N4	169.68(6)
	01	Ni1	N3	96.04(6)	N3	Ni1	N4	78.56(6)
	03	Ni1	N3	92.63(6)				
	O3	Ni1	01	167.75(10)	N3	Ni1	N1	164.74(11)
	03	Ni1	N3	91.39(12)	N4	Ni1	N1	93.88(11)
	01	Ni1	N3	80.68(11)	O3	Ni1	N2	92.22(11)
	03	Ni1	N4	80.74(12)	O1	Ni1	N2	97.20(10)
	01	Ni1	N4	91.14(11)	N3	Ni1	N2	90.84(12)
	N3	Ni1	N4	98.51(11)	N4	Ni1	N2	168.38(12)
	03	Ni1	N1	99.40(11)	N1	Ni1	N2	78.07(12)
Ni11	01	Ni1	N1	90.24(10)	05	Ni2	N7	80.91(11)
	05	Ni2	O7	167.61(9)	07	Ni2	N5	96.62(10)
	N7	Ni2	O7	91.51(10)	N8	Ni2	N5	92.12(11)
	05	Ni2	N8	90.90(11)	05	Ni2	N6	102.47(10)
	N7	Ni2	N8	98.95(11)	N7	Ni2	N6	92.65(11)
	07	Ni2	N8	80.55(11)	07	Ni2	N6	87.57(10)
	05	Ni2	N5	92.62(10)	N8	Ni2	N6	163.56(11)
	N7	Ni2	N5	167.22(11)	N5	Ni2	N6	77.92(11)
	02	Ni1	N4	92.40(8)	N2	Ni1	02	80.77(8)
	02	Ni1	N3	90.08(8)	N2	Ni1	N4	166.93(9)
	02	Ni1	N1	95.51(8)	N2	Ni1	N3	97.93(8)
NG12	O3	Ni1	O2	166.61(7)	N2	Ni1	N1	91.48(9)
11112	03	Ni1	N2	90.82(8)	N4	Ni1	N1	78.02(9)
	03	Ni1	N4	97.77(8)	N3	Ni1	N4	93.18(8)
	03	Ni1	N3	80.71(8)	N3	Ni1	N1	169.73(9)
	03	Ni1	N1	95.11(8)				
Ni13	02	Ni1	01	169.13(13)	01	Ni1	N4	88.72(14)

	O2	Ni1	N3	87.06(14)	N1	Ni1	N3	96.87(15)
	02	Ni1	N1	91.89(14)	N1	Ni1	N4	166.33(15)
	02	Ni1	N2	80.68(14)	N2	Ni1	N3	164.63(15)
	02	Ni1	N4	100.51(14)	N2	Ni1	N1	92.78(15)
	01	Ni1	N3	100.56(14)	N2	Ni1	N4	94.88(15)
	01	Ni1	N1	79.58(14)	N4	Ni1	N3	78.21(15)
	01	Ni1	N2	92.91(14)				
	01	Ni1	N4	87.62(9)	02	Ni1	N2	80.57(9)
	01	Ni1	N1	79.83(10)	N1	Ni1	N4	166.67(10)
	01	Ni1	N3	90.48(9)	N1	Ni1	N3	97.95(10)
NG17	01	Ni1	N2	93.70(9)	N1	Ni1	N2	83.06(10)
11114	02	Ni1	O1	172.50(9)	N3	Ni1	N4	77.54(9)
	02	Ni1	N4	98.31(9)	N2	Ni1	N4	102.36(9)
	02	Ni1	N1	94.58(9)	N2	Ni1	N3	175.80(9)
	02	Ni1	N3	95.27(9)				
	N2	Ni1	O1	91.99(15)	N3	Ni1	N4	78.73(16)
	N2	Ni1	N3	96.74(16)	02	Ni1	N4	96.09(14)
	01	Ni1	N3	92.37(15)	N2	Ni1	N1	92.05(16)
NG15	N2	Ni1	O2	80.35(15)	01	Ni1	N1	80.02(15)
11115	01	Ni1	O2	170.86(12)	N3	Ni1	N1	168.58(15)
	N3	Ni1	02	93.46(15)	02	Ni1	N1	95.19(15)
	N2	Ni1	N4	174.12(15)	N4	Ni1	N1	92.93(15)
	01	Ni1	N4	91.94(15)				
	01	Ni1	N4	91.21(13)	04	Ni2	O3	169.65(12)
	01	Ni1	N1	80.56(13)	O4	Ni2	N8	92.28(13)
	01	Ni1	N2	92.09(13)	O4	Ni2	N6	80.85(13)
	01	Ni1	N3	93.43(14)	O4	Ni2	N7	93.97(13)
	02	Ni1	01	171.27(12)	O4	Ni2	N5	91.24(13)
	02	Ni1	N4	96.19(12)	03	Ni2	N8	94.71(13)
	02	Ni1	N1	94.23(14)	03	Ni2	N6	92.56(13)
	02	Ni1	N2	81.12(12)	03	Ni2	N7	94.70(13)
Ni16	02	Ni1	N3	92.46(14)	03	Ni2	N5	80.81(13)
	N1	Ni1	N4	94.32(14)	N8	Ni2	N7	80.51(16)
	N1	Ni1	N2	92.93(14)	N6	Ni2	N8	172.33(14)
	N1	Ni1	N3	171.42(14)	N6	Ni2	N7	96.46(15)
	N2	Ni1	N4	172.44(14)	N6	Ni2	N5	90.71(15)
	N2	Ni1	N3	93.41(14)	N5	Ni2	N8	92.87(16)
	N3	Ni1	N4	79.60(14)	N5	Ni2	N7	171.72(16)
	05	Ni3	06	168.17(12)	07	Ni4	N16	91.83(12)
	05	Ni3	N9	81.15(12)	O 7	Ni4	N15	96.50(13)

	05	Ni3	N11	94.08(13)	08	Ni4	07	171.94(12)
	05	Ni3	N12	92.23(13)	O8	Ni4	N13	93.99(13)
	05	Ni3	N10	90.57(12)	O8	Ni4	N16	94.48(12)
	O6	Ni3	N9	91.15(13)	O8	Ni4	N14	81.23(12)
	O6	Ni3	N11	95.45(13)	O 8	Ni4	N15	89.54(13)
	06	Ni3	N12	96.42(13)	N13	Ni4	07	80.29(13)
	06	Ni3	N10	80.53(13)	N13	Ni4	N16	96.57(14)
	N9	Ni3	N11	94.22(15)	N13	Ni4	N15	175.24(14)
	N9	Ni3	N12	170.41(15)	N16	Ni4	N15	79.95(15)
	N9	Ni3	N10	91.07(14)	N14	Ni4	07	93.06(12)
	N12	Ni3	N11	79.25(17)	N14	Ni4	N13	90.37(14)
	N10	Ni3	N11	173.43(15)	N14	Ni4	N16	172.10(14)
	N10	Ni3	N12	95.96(17)	N14	Ni4	N15	93.33(14)
	01	Ni1	N3	95.71(17)	N4	Ni1	N2	91.54(18)
	01	Ni1	N4	173.05(17)	O2	Ni1	N3	168.63(17)
	01	Ni1	02	94.86(15)	O2	Ni1	N4	91.05(17)
NG17	01	Ni1	N1	80.63(17)	O2	Ni1	N1	97.39(17)
	01	Ni1	N2	93.03(17)	O2	Ni1	N2	80.62(17)
	N3	Ni1	N1	88.48(18)	N2	Ni1	N3	94.62(18)
	N4	Ni1	N3	78.70(19)	N2	Ni1	N1	173.21(18)
	N4	Ni1	N1	95.00(18)				
	01	Ni1	N3	98.3(2)	N2	Ni1	N3	169.6(2)
	02	Ni1	01	170.37(19)	N1	Ni1	01	79.9(2)
	02	Ni1	N2	80.2(2)	N1	Ni1	N2	92.4(2)
Ni18	O2	Ni1	N1	95.9(2)	N1	Ni1	N3	93.4(2)
1110	02	Ni1	N3	90.6(2)	N4	Ni1	01	93.9(2)
	02	Ni1	N4	91.6(2)	N4	Ni1	N2	97.4(2)
	N2	Ni1	01	91.2(2)	N4	Ni1	N1	168.5(2)
	N4	Ni1	N3	77.8(2)				
	02	Ni1	N4	91.38(8)	O1	Ni1	N2	102.23(8)
	02	Ni1	N3	87.91(8)	N4	Ni1	N1	165.88(9)
	02	Ni1	N1	102.05(8)	N4	Ni1	N2	92.74(8)
Ni19	02	Ni1	N2	80.45(8)	N3	Ni1	N4	79.21(9)
	01	Ni1	02	176.71(7)	N3	Ni1	N1	96.75(8)
	01	Nil	N4	86.61(8)	N3	Nil	N2	165.71(8)
	01	Ni1	N3	89.16(8)	N2	Ni1	N1	93.76(8)
	01	Nil	N1	79.77(8)				
	O1 ⁱⁱ	Ni1	01	95.39(14)	01	Ni1	N1	80.77(10)
	O1 ⁱⁱ	Ni1	N2 ⁱⁱ	93.40(10)	N2	Ni1	N2 ⁱⁱ	78.39(15)
	01	Ni1	N2 ⁱⁱ	169.75(10)	$N1^1$	Ni1	N2 ⁱⁱ	93.32(10)

Ni20	O1 ⁱⁱ	Ni1	N2	169.75(10)	N1 ⁱⁱ	Ni1	N2	93.47(10)
	01	Ni1	N2	93.39(10)	N1	Ni1	N2	93.32(10)
	O1 ⁱⁱ	Ni1	N1	93.30(10)	N1	Ni1	N2 ⁱⁱ	93.47(10)
	O1 ⁱⁱ	Ni1	$N1^{ii}$	80.77(10)	N1	Ni1	$N1^{ii}$	171.24(15)
	01	Ni1	$N1^{ii}$	93.30(10)				
	O2	Ni1	N4	91.13(7)	01	Ni1	N2	96.26(8)
	02	Ni1	N1	95.20(7)	N1	Ni1	N4	95.63(8)
	O2	Ni1	N3	92.31(7)	N3	Ni1	N4	78.25(8)
N;91	02	Ni1	N2	80.38(7)	N3	Ni1	N1	170.41(8)
IN121	01	Ni1	O2	174.38(7)	N3	Ni1	N2	95.65(8)
	01	Ni1	N4	92.68(7)	N2	Ni1	N4	169.40(8)
	01	Ni1	N1	80.32(7)	N2	Ni1	N1	91.48(8)
	01	Ni1	N3	92.50(7)				
	05	Ni1	O4	173.54(6)	O4	Ni1	N2	96.37(7)
	05	Ni1	N4	91.59(7)	N3	Ni1	N4	78.30(7)
	05	Ni1	N3	92.64(7)	N3	Ni1	N1	170.67(7)
N:22	05	Ni1	N1	94.22(7)	N3	Ni1	N2	96.71(7)
INIZZ	05	Ni1	N2	79.90(7)	N1	Ni1	N4	95.18(7)
	O4	Ni1	N4	92.58(7)	N1	Ni1	N2	90.71(7)
	O4	Ni1	N3	93.04(7)	N2	Ni1	N4	170.00(7)
	O4	Ni1	N1	80.49(7)				

Symmetry codes: (i) 1-x, y,1/2-z; (ii) 1-x,+y,3/2- z.

Table S8. $IC_{50}\left(\mu M\right)$ values determined by MTT assay of H-La1–H-La7 and

Lb1-Lb12	2 against HL	7702.	A549	and A	549/DDP	cells	for	24	h

	A549	A549/DDP	HL-7702
H-La1	>50	>50	>50
H-La2	>50	>50	>50
H-La3	>50	>50	>50
H-La4	>50	>50	>50
H-La5	>50	>50	>50
H-La6	>50	>50	>50
H-La7	>50	>50	>50
Lb1	>50	>50	>50
Lb2	>50	>50	>50
Lb3	>50	>50	>50

Lb4	>50	>50	>50
Lb5	>50	>50	>50
Lb6	>50	>50	>50
Lb7	>50	>50	>50
Lb8	>50	>50	>50
Lb9	>50	>50	>50
Lb10	>50	>50	>50
Lb11	>50	>50	>50

Figure S2. IR (KBr) spectra of complex Ni2.

Figure S4. IR (KBr) spectra of complex Ni4.

Figure S5. IR (KBr) spectra of complex Ni5.

Figure S6. IR (KBr) spectra of complex Ni8.

Figure S7. IR (KBr) spectra of complex Ni9.

Figure S8. IR (KBr) spectra of complex Ni10.

Figure S9. IR (KBr) spectra of complex Ni11.

Figure S10. IR (KBr) spectra of complex Ni12.

Figure S11. IR (KBr) spectra of complex Ni13.

Figure S14. IR (KBr) spectra of complex Ni16.

Figure S17. IR (KBr) spectra of complex Ni19.

Figure S18. IR (KBr) spectra of complex Ni20.

Figure S19. IR (KBr) spectra of complex Ni21.

Figure S21. The mass spectra of Ni1 (2×10^{-5} M) in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S22. The mass spectra of Ni2 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S23. The mass spectra of Ni3 (2×10^{-5} M) in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S24. The mass spectra of Ni4 (2×10^{-5} M) in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S25. The mass spectra of Ni8 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution

Figure S26. The mass spectra of Ni10 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution

(containing 5% DMSO) for 0 h.

Figure S27. The mass spectra of Ni11 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S28. The mass spectra of Ni12 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S29. The mass spectra of Ni13 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution

(containing 5% DMSO) for 0 h.

Figure S30. The mass spectra of Ni14 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S31. The mass spectra of Ni15 (2×10⁻⁵ M) in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S32. The mass spectra of Ni16 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S33. The mass spectra of Ni17 (2×10⁻⁵ M) in Tris-HCl buffer solution

Figure S34. The mass spectra of Ni18 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S35. The mass spectra of Ni19 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S36. The mass spectra of Ni20 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S37. The mass spectra of Ni21 (2×10⁻⁵ M) in Tris-HCl buffer solution

Figure S38. The mass spectra of Ni22 $(2 \times 10^{-5} \text{ M})$ in Tris-HCl buffer solution (containing 5% DMSO) for 0 h.

Figure S39. The molecular structures of Ni1.

Figure S40. The molecular structures of Ni2, omitted the solvent molecules.

Figure S41. The molecular structures of Ni3, Omitted the H-atoms and solvent

molecules.

Figure S42. The molecular structures of Ni4.

Figure S43. The molecular structures of Ni5.

Figure S44. The molecular structures of Ni6.

Figure S45. The molecular structures of Ni7.

Figure S46. The molecular structures of Ni8.

Figure S47. The molecular structures of Ni9.

Figure S48. The molecular structures of Ni10.

Figure S49. The molecular structures of Ni11.

Figure S50. The molecular structures of Ni12.

Figure S51. The molecular structures of Ni13.

Figure S52. The molecular structures of Ni14.

Figure S53. The molecular structures of Ni15.

Figure S54. The molecular structures of Ni16.

Figure S56. The molecular structures of Ni18.

Figure S57. The molecular structures of Ni19.

Figure S58. The molecular structures of Ni20. Omitted the H-atoms and solvent

molecules.

Figure S59. The molecular structures of Ni21.

Figure S60. The molecular structures of Ni22.

Figure S61. UV-Vis absorption spectra of Ni1 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S62. UV-Vis absorption spectra of Ni2 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

the time course 0 h and 48 h, respectively.

Figure S63. UV-Vis absorption spectra of Ni3 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S64. UV-Vis absorption spectra of Ni4 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S65. UV-Vis absorption spectra of Ni5 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S66. UV-Vis absorption spectra of Ni6 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S67. UV-Vis absorption spectra of Ni7 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S68. UV-Vis absorption spectra of Ni8 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S69. UV-Vis absorption spectra of Ni9 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S70. UV-Vis absorption spectra of Ni10 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S71. UV-Vis absorption spectra of **Ni11** (2.0×10⁻⁵ M) in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S72. UV-Vis absorption spectra of Ni12 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S73. UV-Vis absorption spectra of Ni13 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S74. UV-Vis absorption spectra of Ni14 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S75. UV-Vis absorption spectra of Ni15 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S76. UV-Vis absorption spectra of Ni16 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S77. UV-Vis absorption spectra of **Ni17** (2.0×10⁻⁵ M) in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S78. UV-Vis absorption spectra of Ni18 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S79. UV-Vis absorption spectra of Ni19 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S80. UV-Vis absorption spectra of Ni20 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in

Figure S81. UV-Vis absorption spectra of Ni21 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.

Figure S82. UV-Vis absorption spectra of Ni22 $(2.0 \times 10^{-5} \text{ M})$ in Tris-NaCl solution in the time course 0 h and 48 h, respectively.