Supporting information for

Use of heterometallic alkali metal-magnesium aryloxides in ring-opening

polymerization of cyclic esters

Rafał Petrus,^{a,*} Tadeusz Lis^b, Adrian Kowaliński^a

^aFaculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland

^bFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

Corresponding author: Dr. Rafał Petrus, <u>rafal.petrus@pwr.edu.pl</u>

Contents

X-Ray Crystallography for 4-8	.S2
Crystal structures of 1-3	.S3
¹ H, ¹³ C{ ¹ H}, ⁷ Li NMR and FTIR-ATR spectra of 4-8	.S4
¹ H-DOSY NMR study of 1-3 and 6-7	S14

Crystallographic Data for Compounds 4-8.

Crystal	4	5	6 ·(C ₄ H ₈ O)	7 ·2(C ₄ H ₈ O)	8
Chemical formula	C54H54Li2Mg2O18	C ₂₇ H ₂₇ KMgO ₉	C118H118AlMg6Na4O50	C86H98Mg4Na2O30	$C_{40}H_{56}Mg_4O_{20}$
Formula Mass	1053.47	558.89	2600.92	1754.86	954.08
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Tetragonal
Space group	$P2_{1}/n$	<i>P</i> 1	C2/c	$P2_{1}/n$	$I4_{1}/a$
a/Å	11.669 (2)	6.610 (2)	58.522 (18)	17.285 (3)	15.850 (3)
b/Å	17.376 (3)	12.874 (4)	15.832 (5)	13.750 (3)	
$c/{ m \AA}$	13.155 (2)	16.166 (5)	27.991 (12)	18.986 (4)	18.016 (3)
a/°		97.48 (4)			
$eta / ^{\circ}$	92.27 (2)	90.45 (4)	108.43 (5)	106.54 (2)	
γ/°		97.24 (4)			
Unit cell volume/Å3	2665.2 (8)	1352.7 (7)	24604 (17)	4325.7 (16)	4526.0 (19)
Temperature/K	100(2)	100(2)	100(2)	100(2)	100(2)
Ζ	2	2	8	2	4
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.12	0.27	0.15	0.14	0.16
No. of reflections measured	27574	14609	54054	41380	5798
No. of independent reflections	5802	14609	24832	10372	2436
No. of observed reflections	observed reflections		8570	6235	1946
$(I > 2\sigma(I))$	5127	9709	8370		
Rint	0.0390	-	0.0948	0.0801	0.0784
Final R_I values $(I > 2\sigma(I))$	0.0422	0.0727	0.0782	0.0480	0.0775
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1122	0.1594	0.1564	0.1118	0.1980
Final <i>R</i> ¹ values (all data)	0.0477	0.1130	0.2219	0.0855	0.0916
Final $wR(F^2)$ values (all data)	0.1188	0.1594	0.2427	0.1215	0.2126
Goodness of fit on F^2	1.032	0.97	0.98	0.87	1.09
Δρmax/eÅ ⁻³	0.35	0.51	0.82	0.49	0.77
Δpmin/eÅ ⁻³	-0.25	-0.57	-0.44	-0.51	-0.67

Table S1. Crystal and data collection parameters for compounds 4-8.

Figure S1. Molecular structure of $[Mg_2Li_2(MesalO)_6]$ (1) with displacement ellipsoids drawn at the 25% probability level. Hydrogen atoms are omitted for clarity [symmetry code: (i) -x+1, -y+1, -z+1]. Reprinted (adapted) with permission from *Macromolecules* 2021, 54, 5, 2449–2465. Copyright 2021 American Chemical Society.

Figure S2. Molecular structure of $[Mg_2Na_2(MesalO)_6(THF)_y]$ (2) for y = 2 or 4 with displacement ellipsoids drawn at the 25% probability level. The hydrogen atoms are omitted for clarity [symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z]. Reprinted (adapted) with permission from *Macromolecules* 2021, 54, 5, 2449–2465. Copyright 2021 American Chemical Society.

Figure S3. Molecular structure of $[Mg_2K_2(MesalO)_6(THF)_4]$ (**3**) with displacement ellipsoids drawn at the 25% probability level. The hydrogen atoms are omitted for clarity [symmetry code: (i) -x+1, -y+1, -z+1]. Reprinted (adapted) with permission from *Macromolecules* 2021, 54, 5, 2449–2465. Copyright 2021 American Chemical Society.

Figure S4. ¹H NMR spectrum of 4 in THF-d₈.

Figure S6. ⁷Li NMR spectrum of 4 in THF-d₈.

Figure S8. ¹H NMR spectrum of 4 in THF-d₈ at 50 °C.

Figure S10. ¹H NMR spectrum of 5 in THF-d₈.

Figure S12. ¹H-DOSY NMR spectrum of **5** in THF-d₈. * - assigned the residues of MesalO ligands.

Figure S14. ¹H NMR spectrum of 6 in THF-d₈.

Figure S16. FTIR-ATR spectrum of 6.

Figure S17. ¹H NMR spectrum of 7 in THF-d₈.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of 7 in THF-d₈.

Figure S19. FTIR-ATR spectrum of 7.

Figure S20. ¹H NMR spectrum of 8 in THF-d₈.

Figure S21. ¹³C NMR spectrum of 8 in THF-d₈.

Figure S22. FTIR-ATR spectrum of 8.

Figure S23. ¹H-DOSY NMR spectrum of the mixture of **1** and 4 equiv. of cetyl alcohol in THF-d₈.

Figure S24. ¹H-DOSY NMR spectrum of the mixture of 2 and 4 equiv. of cetyl alcohol in THF- d_8 .

compound	$\log(D_{\rm x,norm})$	Fw (g/mol)	Fw _{calc} (g/mol)	r _{x-ray} (Å)	r _H (Å)	Δ Fw (%)
1	-9.168	969	944	6.82	8.42	3
2	-9.216	1290	1214	7.23	9.16	6
3	-9.236	1322	1354	7.24	9.49	2
1	-9.234	969	1060	6.82	8.75	9
2	-9.232	1290	1264	7.23	9.28	2
3	-9.236	1322	1302	7.24	9.37	2
5	-9.258	1406	1519	6.86	9.86	7

Table S2. Formula weights (Fws) and the hydrodynamic radii (r_H) of 1-3 and 5 estimated from Stokes-Einstein Gierer-Wirtz method.

Table S3. Diffusion coefficients and estimated formula weight for 1-3 and 6-7 determine using calibration plots.

compound	$\log(D_{\rm x})$	Fw (g/mol)	Fw _{calc} (g/mol)	Δ Fw (%)
1	-9.200	969	1156	19
2	-9.230	1290	1273	2
3	-9.290	1322	1516	15
7	-9.233	1610	2035	26
	-9.238 (2)	1290	1107	14
6	-9.333 (7)	1610	1702	6
	-9.436	2556	2710	6

Figure S25. ¹H DOSY NMR spectrum of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene, and **1** in THF-d₈.

Figure S26. ¹H DOSY NMR spectrum of a mixture of anthracene, α , α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene, and **2** in THF-d₈.

Figure S27. ¹H DOSY NMR spectrum of a mixture of anthracene, α , α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene, and **3** in THF-d₈.

Figure S28. Plot of diffusion coefficient (log*D*) versus formula weight (log Fw) of a mixture of anthracene, α , α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene and **1** in THF-d₈.

Figure S29. Plot of diffusion coefficient (log*D*) versus formula weight (log Fw) of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene and **2** in THF-d₈.

Figure S30. Plot of diffusion coefficient (log*D*) versus formula weight (log Fw) of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene and **3** in THF-d₈.

Figure S31. ¹H-DOSY NMR spectrum in THF-d₈ of the PLLA synthesized using 1 and ROH.

Figure S32. ¹H-DOSY NMR spectrum in THF-d₈ of the PLLA synthesized using 2 and ROH.

Figure S33. ¹H DOSY NMR spectrum of a mixture of anthracene, α , α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene, and **6** in THF-d₈.

Figure S34. ¹H DOSY NMR spectrum of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene, and **7** in THF-d₈.

Figure S35. Plot of diffusion coefficient (log*D*) versus formula weight (log Fw) of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene and **6** in THF-d₈.

Figure S36. Plot of diffusion coefficient (log*D*) versus formula weight (log Fw) of a mixture of anthracene, α, α '-dibromo-o-xylene, 1,2,4,5-tetrakis(bromomethyl)benzene and **7** in THF-d₈.