Supplementary Information for

Spectroscopic investigation of the covalency in An(III) complexes with Picolindiamides

Thomas Sittel, *a,b Patrik Weßling, b,a Dennis Großmann, bEliane Engels, b Andreas Geist, a and Petra J. Panaka,b

^aKarlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.

^bHeidelberg University, Institute for Physical Chemistry, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany

E-mail: thomas.sittel@kit.edu

Table of Contents

¹ H, ¹³ C, ¹⁵ N and ¹⁹ F shifts for [M(Et-Pic) ₃] ³⁺ and ESI-MS data	2
NMR spectra of [M(Et-Pic) ₃] ³⁺	4
Comparison $\delta(^{13}C)_{aromat}$ of [M(Et-Pic) ₃] ³⁺ and [M(nPr-BTP) ₃] ³⁺	14
Time-resolved laser fluorescence spectroscopy (TRLFS)	14

¹H, ¹³C, ¹⁵N and ¹⁹F shifts for [M(Et-Pic)₃]³⁺ and ESI-MS data

Et-Pic

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 7.93 (t, ³J(H1-H2) = 7.8 Hz, 1 H, H-1), 7.50 (d, ³J(H1-H2) = 7.8 Hz, 2 H, H-2), 3.50 (q, ³J(H3-H5) = 7.4 Hz, H-5), 3.25 (q, ³J(H3-H5) = 7.2 Hz, H-6), 1.20 (q, ³J(H3-H5) = 7.4 Hz, H-7), 1.09 (q, ³J(H3-H5) = 7.2 Hz, H-8).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ[ppm] = 167.8 (C_q, C-4), 154.4 (C_q, C-3), 138.2 (C_s, C-1), 122.4 (C_s, C-2), 42.9 (C_s, C-7), 39.5 (C_s, C-5), 13.5 (C_p, C-8), 12.1 (C_p, C-6).

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 304* (N_{pvr}), 130* (R₂N-C=O).

*values have been taken from ¹H, ¹⁵N HMQC.

$[Am(Et-Pic)_3](NO_3)_3$

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 7.87-7.75 (m, 3H, H-1/H-2), 3.60 (q, ³J(H3-H5) = 7.8 Hz, 4H, H-7), 3.33 (br s, 4H, H-5), 1.21 (t, ³J(H3-H5) = 7.0 Hz, 6H, H-6), 1.19 (t, ³J(H3-H5) = 7.8 Hz, 6H, H-8).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ[ppm] = 172.3* (C_q, C-4), 153.5 (C_q, C-3), 141.4 (C_s, C-1), 121.4 (C_s, C-2), 43.5 (C_s, C-7), 40.7 (C_s, C-5), 13.8 (C_p, C-6), 12.1 (C_p, C-8).

*shift has been taken from ¹H, ¹³C HMBC.

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 137* (R₂N-C=O).

*value has been taken from ¹H, ¹⁵N HMQC.

Radiolytic degradation: NMR measurements of the Am(III) sample were conducted over the course of approx. seven days. By repeatedly acquiring ¹H NMR spectra, a potential radiolytic degradation of the ligand could be excluded.

[La(Et-Pic)₃](OTf)₃

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 8.24 (t, ³J(H1-H2) = 7.8 Hz, 1H, H-1), 7.91 (d, ³J(H1-H2) = 7.8 Hz, 2H, H-2), 3.60 (q, ³J(H3-H5) = 7.2 Hz, 4H, H-7), 3.33 (q, ³J(H3-H5) = 7.2 Hz, 4H, H-5), 1.32 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-8), 1.02 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-6).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ [ppm] = 169.1 (C_q, C-4), 150.5 (C_q, C-3), 141.2 (C_s, C-1), 126.1 (C_s, C-2), 44.4 (C_s, C-7), 42.0 (C_s, C-5), 13.2 (C_p, C-8), 11.4 (C_p, C-6).

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 299* (N_{pyr}), 143* (R₂N-C=O).

*values have been taken from ¹H, ¹⁵N-HMQC.

¹⁹**F NMR** (376.50 MHz, CD₃CN, 300 K): δ[ppm]= -79.29 (CF₃SO₃⁻).

MS (ESI⁺, MeOH)

 $[La(Et-Pic)_3(OTf)]^{2+} = LaC_{46}H_{69}N_9O_9SF_3$, calculated: 559.6973, found: 559.6976,

 $[La(Et-Pic)_2(OTf)(MeO)]^+ = LaC_{32}H_{49}N_6O_8SF_3$, calculated: 873.2339, found: 873.2359,

 $[La(Et-Pic)_2(OTf)_2]^+ = LaC_{32}H_{46}N_6O_{10}S_2F_6$, calculated: 991.1675, found: 991.1692.

[Sm(Et-Pic)₃](OTf)₃

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 8.45 (br. s, 1H, H-1), 8.14 (br. s, 2H, H-2), 3.65 (br. s, 4H, H-7), 3.23 (br. s, 4H, H-5), 1.36 (t, ³J(H3-H5) = 6.7 Hz, 6H, H-8), 0.84 (br. t, 6H, H-6).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ[ppm] = 171.0 (C_q, C-4), 151.0 (C_q, C-3), 142.3 (C_s, C-1), 126.4 (C_s, C-2), 44.5 (C_s, C-7), 42.7 (C_s, C-5), 13.2 (C_p, C-8), 11.3 (C_p, C-6).

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 144* (R₂N-C=O).

*value has been taken from ¹H, ¹⁵N-HMQC.

¹⁹**F NMR** (376.50 MHz, CD₃CN, 300 K): δ[ppm]= -79.28 (CF₃SO₃⁻).

MS (ESI⁺, MeOH)

 $[Sm(Et-Pic)_3(OTf)]^{2+} = SmC_{46}H_{69}N_9O_9SF_3$, calculated: 566.2044, found: 566.2048,

 $[Sm(Et-Pic)_2(OTf)(MeO)]^+ = SmC_{32}H_{49}N_6O_8SF_3$, calculated: 886.2482, found: 886.2498,

 $[Sm(Et-Pic)_2(OTf)_2] + = SmC_{32}H_{46}N_6O_{10}S_2F_6$, calculated: 1004.1817, found: 1004.1836.

[Lu(Et-Pic)₃](OTf)₃

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 8.36 (t, ³J(H1-H2) = 7.8 Hz, 1H, H-1), 8.08 (d, ³J(H1-H2) = 7.8 Hz, 2H, H-2), 3.76-3.70 (m, 4H, H-7), 3.35-3.25 (m, 2H, H-5a), 3.17-3.08 (m, 2H, H-5b), 1.40 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-8), 0.87 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-6).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ[ppm] = 168.4 (C_q, C-4), 148.0 (C_q, C-3), 141.8 (C_s, C-1), 127.5 (C_s, C-2), 44.8 (C_s, C-7), 43.5 (C_s, C-5), 13.2 (C_p, C-8), 11.4 (C_p, C-6).

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 297* (N_{pyr}), 144* (R₂N-C=O).

*shifts have been taken from ¹H, ¹⁵N-HMQC.

¹⁹**F NMR** (376.50 MHz, CD₃CN, 300 K): δ[ppm]= -79.28 (CF₃SO₃⁻).

MS (ESI⁺, MeOH)

 $[Lu(Et-Pic)_3(OTf)]^{2+} = LuC_{46}H_{69}N_9O_9SF_3$, calculated: 577,7150, found: 577.7148,

 $[Lu(Et-Pic)_2(OTf)(MeO)]^+ = LuC_{32}H_{49}N_6O_8SF_3$, calculated: 909.2692, found: 909.2700,

 $[Lu(Et-Pic)_2(OTf)_2]^+ = LuC_{32}H_{46}N_6O_{10}S_2F_6$, calculated: 1027.2029, found: 1027.2034.

[Y(Et-Pic)₃](OTf)₃

¹**H NMR** (400.13 MHz, CD₃CN, 300 K): δ[ppm] = 8.34 (t, ³J(H1-H2) = 8.0 Hz, 1H, H-1), 8.06 (d, ³J(H1-H2) = 8.0 Hz, 2H, H-2), 3.75-3.68 (br. m, 4H, H-7), 3.36-3.27 (br. m, 2H, H-5a), 3.20-3.11 (br. m, 2H, H-5b), 1.39 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-8), 0.90 (t, ³J(H3-H5) = 7.2 Hz, 6H, H-6).

¹³**C NMR** (100.63 MHz, CD₃CN, 300 K): δ[ppm] = 168.2 (C_q, C-4), 148.5 (C_q, C-3), 141.9 (C_s, C-1), 127.2 (C_s, C-2), 44.8 (C_s, C-7), 43.3 (C_s, C-5), 13.2 (C_p, C-8), 11.4 (C_p, C-6).

¹⁵N NMR (40.58 MHz, CD₃CN, 300 K): δ[ppm] = 297* (N_{pyr}), 146* (R₂N-C=O).

*values have been taken from ¹H, ¹⁵N-HMQC.

¹⁹**F NMR** (376.50 MHz, CD₃CN, 300 K): δ[ppm]= -79.28 (CF₃SO₃⁻).

MS (ESI⁺, MeOH)

 $[Y(Et-Pic)_3(OTf)]^{2+} = YC_{46}H_{69}N_9O_9SF_3$, calculated: 534,6975, found: 534.6972,

 $[Y(Et-Pic)_2(OTf)(MeO)]^+ = YC_{32}H_{49}N_6O_8SF_3$, calculated: 823.2343, found: 823.2348,

 $[Y(Et-Pic)_2(OTf)_2]^+ = YC_{32}H_{46}N_6O_{10}S_2F_6$, calculated: 941.1679, found: 941.1683.

NMR spectra of [M(Et-Pic)₃]³⁺

 $[Am(Et-Pic)]_3(NO_3)_3$

Figure S1 ¹*H NMR spectrum (400.18 MHz, 300 K) of* $[Am(Et-Pic)_3](NO_3)_3$ ([Am] = 6.8 mmol/L) in CD₃CN (* $\delta(H_2O)$; # $\delta(CD_3CN)$).

Figure S2 ¹³C NMR spectrum (100.63 MHz, 300 K) of $[Am(Et-Pic)_3](NO_3)_3$ ([Am] = 6.8 mmol/L) in CD₃CN (# $\delta(CD_3CN)$).

Figure S3 ${}^{1}H/{}^{15}N$ HMQC spectrum of $[Am(Et-Pic)_{3}](NO_{3})_{3}$ ([Am] = 6.8 mmol/L) in CD₃CN (# $\delta(CD_{3}CN)$).

Figure S4 ¹*H NMR spectrum (400.18 MHz, 300 K) of* $[La(Et-Pic)_3](OTf)_3$ ([La] = 10 mmol/L) in CD_3CN (* $\delta(H_2O)$; # $\delta(CD_3CN)$).

Figure S5 ¹³*C* NMR spectrum (100.63 MHz, 300 K) of $[La(Et-Pic)_3](OTf)_3$ ([La] = 10 mmol/L) in CD_3CN (# $\delta(CD_3CN)$).

Figure S6 ${}^{1}H/{}^{15}N$ HMQC spectrum of $[La(Et-Pic)_{3}](OTf)_{3}$ ([La] = 10 mmol/L) in CD₃CN (# $\delta(CD_{3}CN)$).

Figure S7 ¹⁹*F* NMR spectrum (376.50 MHz, 300 K) of the OTf⁻ anion of $[La(Et-Pic)_3](OTf)_3$ ([La] = 10 mmol/L) in CD₃CN.

Figure S8 ¹*H NMR spectrum (400.18 MHz, 300 K) of* $[Lu(Et-Pic)_3](OTf)_3$ ([Lu] = 10 mmol/L) in CD₃CN (* $\delta(H_2O)$; # $\delta(CD_3CN)$).

Figure S9 ¹³C NMR spectrum (100.63 MHz, 300 K) of $[Lu(Et-Pic)_3](OTf)_3$ ([Lu] = 10 mmol/L) in CD₃CN (# $\delta(CD_3CN)$).

Figure S10 ${}^{1}H/{}^{15}N$ HMQC spectrum of $[Lu(Et-Pic)_{3}](OTf)_{3}$ ([Lu] = 10 mmol/L) in CD₃CN (# $\delta(CD_{3}CN)$).

Figure S11 ¹⁹*F* NMR spectrum (376.50 MHz, 300 K) of the OTf anion of $[Lu(Et-Pic)_3](OTf)_3$ ([Lu] = 10 mmol/L) in CD₃CN.

Figure S12 ¹*H* NMR spectrum (400.18 MHz, 300 K) of $[Sm(Et-Pic)_3](OTf)_3$ ([Sm] = 10 mmol/L) in CD_3CN (* $\delta(H_2O)$; # $\delta(CD_3CN)$).

Figure S13 ¹³*C* NMR spectrum (100.63 MHz, 300 K) of $[Sm(Et-Pic)_3](OTf)_3$ ([Sm] = 10 mmol/L) in CD_3CN (# $\delta(CD_3CN)$).

 $\label{eq:Figure S14 1H/5N HMQC spectrum of $[Sm(Et-Pic)_3](OTf)_3([Sm] = 10 mmol/L)$ in CD_3CN (# $\delta(CD_3CN))$.}$

Figure S15 ¹⁹*F* NMR spectrum (376.50 MHz, 300 K) of the OTf⁻ anion of $[Sm(Et-Pic)_3](OTf)_3$ ([Sm] = 10 mmol/L) in CD₃CN.

Figure S16 ¹*H* NMR spectrum (400.18 MHz, 300 K) of $[Y(Et-Pic)_3](OTf)_3$ ([Y] = 10 mmol/L) in CD_3CN (* $\delta(H_2O)$; # $\delta(CD_3CN)$).

Figure S17 ¹³*C* NMR spectrum (100.63 MHz, 300 K) of $[Y(Et-Pic)_3](OTf)_3$ ([Y] = 10 mmol/L) in CD₃CN (# $\delta(CD_3CN)$).

Figure S18 ${}^{1}H/{}^{15}N$ HMQC spectrum of $[Y(Et-Pic)_{3}](OTf)_{3}$ ([Y] = 10 mmol/L) in CD₃CN (# $\delta(CD_{3}CN)$).

Figure S19 ¹⁹*F* NMR spectrum (376.50 MHz, 300 K) of the OTf⁻ anion of $[Sm(Et-Pic)_3](OTf)_3$ ([Sm] = 10 mmol/L) in CD₃CN.

Comparison $\delta(^{13}C)_{aromat}$ of $[M(Et-Pic)_3]^{3+}$ and $[M(nPr-BTP)_3]^{3+}$

Table S1 Comparison of ¹³C NMR shifts of the pyridine ring in $[M(Et-Pic)_3]^{3+}$ and $[M(nPr-BTP)_3]^{3+}$ (M = Sm, Am) in respect to ¹³C shifts of the free ligand to highlight different trends between Am(III) and Ln(III) complexes.

[M(Et-Pic) ₃] ^{3 [1]}					[M(nPr-BTP) ₃] ^{3+ [2,3]}					
	none	Sm	$\Delta_{\text{Sm-none}}$	Am	$\Delta_{\text{Am-none}}$	none	Sm	$\Delta_{\text{Am-none}}$	Am	$\Delta_{\text{Am-none}}$
C-1	138.2	142.3	4.1	141.4	3.2	140.2	145.5	5.3	149.7	9.5
C-2	122.4	126.4	4.0	121.4	-1.0	126.7	129.1	2.4	122.4	-4.3
C-3	154.4	151.0	-3.4	153.5	-0.9	161.5	157.7	-3.8	165.5	-3.8

[1] in CD₃CN [2] in CD₃OD:D₂O 3:1

[3] Values taken from Adam et al. Dalton Trans. 2013, 42 (39), 14068-74. DOI: 10.1039/c3dt50953b

Time-resolved laser fluorescence spectroscopy (TRLFS) data

Figure S20 Peak deconvolution of the emission spectrum of Cm(III) with 2.54 10^{-2} mol/L Et-Pic in acetonitrile containing 10 Vol.% H₂O. [Cm(III)]_{ini} = 10^{-7} mol/L.

Figure S21 Fluorescence lifetimes: Decrease of the fluorescence intensity of Cm(III) and Eu(III) in acetonitrile + 10 Vol.% H_2O with increasing delay time (c(Cm) = 1 × 10⁻⁷ mol L⁻¹, c(Eu) = 1 × 10⁻⁵ mol L⁻¹).

Figure S22 Fluorescence lifetimes: Decrease of the fluorescence intensity of Cm(III) and Eu(III) in acetonitrile + 10 Vol.% H_2O with increasing delay time (c(Et-Pic) = 0.2 mol L⁻¹;c(Cm) = 1 × 10⁻⁷ mol L⁻¹, c(Eu) = 1 × 10⁻⁵ mol L⁻¹).

Figure S23 Evolution of the relative fluorescence intensity for the complexation of Cm(III) with Et-PIc in acetonitile + 10 Vol.% H_2O as a function of the Et-Pic concentration (c(Cm(III))_{ini} = 1 x 10⁻⁷ mol L⁻¹).

Figure S24 Single component spectra of the Eu(III) solvent species and the $[Eu(Et-Pic)_n]^{3+}$ complexes (n = 1-3).

Figure S25 Evolution of the relative fluorescence intensity for the complexation of Eu(III) with Et-PIc in acetonitile + 10 Vol.% H_2O as a function of the Et-Pic concentration ($c(Eu(III))_{ini} = 1 \times 10^{-5}$ mol L⁻¹).

Figure S26 Peak deconvolution of the emission spectrum of Eu(III) with 2.67 10^{-4} mol/L Et-Pic in acetonitrile containing 10 Vol.% H₂O. [Eu(III)]_{ini} = 10^{-5} mol/L.

Figure S27 Double logarithmic plot of the concentration ratios of $[Eu(Et-Pic)_n]^{3+}/[Eu(Et-Pic)_{n-1}]^{3+}$ (n = 1 - 3) as a function of the free Et-Pic concentration.