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Experimental section

General Considerations for Synthesis:

All reactions and workups for NHC ligands were conducted under air unless otherwise
stated. All reactions, workups and manipulations involving the NHC metal complexes and
subsequent reactions were done using standard Schlenk technigues under N2 or in an
MBraun Unilab glovebox under N2 unless otherwise stated. All glassware for glovebox
reactions were dried at 170 °C overnight before use. For air sensitive reactions,
tetrahydrofuran (THF), hexanes, and diethyl ether were dried on an Innovative
Technologies Pure Solv MD-7 Solvent Purification System, degassed by three freeze-
pump-thaw cycles on a Schlenk line, and subsequently stored under activated 4 A
molecular sieves prior to use. Anhydrous acetonitrile was prepared by distillation over
phosphorous pentoxide, followed by degassing by three freeze-pump-thaw cycles and
stored over activated 4 A molecular sieves prior to use. Benzene and pentane were
purchased anhydrous from Sigma-Aldrich, degassed by three freeze-pump-thaw cycles
and subsequently stored over activated 4 A molecular sieves prior to use. Anhydrous
NMR solvents, chloroform-d (CDCI3) and acetonitrile-ds (CD3CN) were degassed by three
freeze-pump-thaw cycles and subsequently stored over activated 4 A molecular sieves
prior to use. Celite used in the synthesis of metal complexes were dried overnight at 240
°C and subsequently stored in the glovebox prior to use. All reagents were purchased
from commercial vendors at high purity. (1S,2S)-(-)-1,2-Diphenylethylenediamine was
purchased from Combi-Blocks at highest available purity (96%). 1,1-diethoxy-2-
isothiocyanatoethane! and methylene bis(trifluoromethanesulfonate)? were synthesized
via previously reported methods.

General Considerations for Molecule Characterization:

Solution 'H NMR and 3C{*H} NMR were performed on a Varian VNMRS 500 MHz
narrow-bore broadband system at 298 K. All 'H and *3C shifts were referenced to the
residual solvent. All mass spectrometry analyses were conducted at the Biological and
Small Molecule Mass Spectrometry Center located in the Department of Chemistry at the
University of Tennessee. The ESI MS analyses on organic molecules were performed
via direct infusion into a Waters Synapt G2-Si mass spectrometer. Infrared spectra were
collected on a Thermo Scientific Nicolet iIS10 with a Smart iTR accessory for attenuated
total reflectance (ATR) using pure samples of each complex. UV-vis measurements were
taken inside a dry glovebox on an Ocean Optics USB4000 UV-vis system with 1 cm path
length quartz crystal cell.

General Considerations for Crystallography:

All X-ray data collections were performed on single crystals coated in Paratone oil on
glass slides and mounted on nylon fibers. Crystals were coated in Paratone oil, which
had previously been degassed with N2 and dried with a piece of sodium metal inside the
glovebox. X-ray data for complexes 5, 6a and 6b were collected with the use of a Mo
microsource and X-ray data for 2 and 7 was collected using a Cu microsource on a Bruker
D8 Venture diffractometer. Crystals were mounted in a 100 K cold stream provided by
an Oxford Cryostream low-temperature apparatus. All data sets were reduced with
Bruker SAINT and were corrected for absorption using SADABS. Structures were solved
and refined using SHELXT and SHELXLEG64, respectively. Compound 7 was treated with
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PLATON SQUEEZE command to remove nonsensical disordered solvent voids and
remove heavily disordered solvent molecules.

General Considerations of Electrochemical Studies:

Cyclic voltammetry measurements were made inside a dry glovebox at ambient
temperature using a BASI Epsilon electrochemical analyzer with a platinum working
electrode, platinum wire counter electrode, and Ag/AgNOzs reference electrode. For all
samples, a 0.1M solution tetrabutylammonium hexafluorophosphate ((TBA)(PFe)) in the
appropriate solvent was used as the supporting electrolyte. All peaks were referenced to
an external standard of ferrocene. Unless overwise stated, all experiments were initiated
at more oxidizing potentials, followed by reduction.

General Considerations for Separation of Chiral Aziridines:

All chiral UHPLC mass spectrometry analyses were conducted at the Biological and Small
Molecule Mass Spectrometry Center located in the Department of Chemistry at the
University of Tennessee. Samples were analyzed using the same ultra-high performance
liquid chromatography combined with high resolution mass spectrometry (UHPLC-
HRMS) method. Autosampler vials were kept at 4 °C in a Dionex Ultimate 3000 RS
Autosampler. Injections of 10 uL were made onto a Phenomenex Lux 3 um Cellulose-1
(150 x 4.6 mm) column kept at 40 °C. Analytes were eluted over 20 minutes at 0.500
mL/min with 0.1% formic acid in water and 0.1% formic acid in acetonitrile (B) using the
following isocratic gradient: 25% A and 75% B. Mass analysis was performed using a
ThermoFisher Orbitrap Exactive Plus. Samples were ionized using heated electrospray
ionization in positive mode with the following parameters: resolution of 140,000, automatic
gain control of 1e6, maximum inject time of 50 ms, sheath gas of 25, aux gas of 10, sweep
gas of 3, spray voltage at 3.25 kV, capillary temperature of 320°C, S-lens at 50, and aux
gas heater at 50°C. Analytes were detected as [M+H]* with a less than 5 ppm mass error
using Xcalibur.

Synthesis of 1,1'-((1S,2S)-1,2-diphenylethane)bis(1,3-dihydro-2H-imidazole-2-
thione), 1.

QP
>

Synthesis of 1 was performed by modifying a previously published procedure.! (1S,2S)-
(-)-1,2-diphenylethylenediamine (10.02 g, 57.17 mmol, 1 eqg.) was added to a 500 mL
round bottom flask with 230 mL of dry acetonitrile while stirring. 1,1-Diethoxy-2-
isothiocyanatoethane (24.27 g, 114.3 mmol, 2 eq.) was added quickly to the round bottom
while stirring. The resulting solution was brought to reflux at 85 °C. The reaction was
allowed to cool to ambient temperature over 3 hours. This solution was then concentrated
in the round bottom flask under high vacuum, resulting in a sticky light-yellow foam. To
the yellow foam was added 1M HCI (230 mL) and the mixture was refluxed at 100 °C
overnight. The reaction was then cooled to room temperature and kept in a -20 °C freezer
overnight. The brown/yellow precipitate was then filtered over a medium porosity frit and
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washed with three times with ice cold water (300 mL) and dried under high vacuum, which
yielded a brown powder (20.3 g, 94.5% yield).

IH NMR (CDCls, 499.74 MHz): & 11.19 (s, 2H), 7.56-7.51 (m, 4H), 7.31-7.20 (m, 6H),
7.16-7.12 (m, 4H), 6.44 (t, J = 2.5 Hz, 2H).

13C NMR (CDCls, 125.66 MHz) § 160.80, 135.84, 129.28, 129.05, 128.31, 116.99, 114.32,
59.90.

IR: 3130, 3089, 3019, 2910, 1568, 1495, 1460, 1412, 1276, 1261, 1157, 1123, 1101,
1076, 917, 880, 812, 740, 726, 694, 671, 628 cm™.

ESI HR MS (m/z): [M+H]*: (C20H19N4S2)*: 379.1031 (found), [M+H]*: (C20H19N4S2)*:
379.1051 (calculated).
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Synthesis of 1,1'-[(1S,2S)-1,2-diphenyl-1,2-ethanediyl]bis-imidazole, 2.

This compound was previously reported by a different synthetic method.® To a 1 L round
bottom flask, the cyclic thiourea (23.4 g, 62.3 mmol, 1 eq) was added along with 625 mL
of 2.5 M HNOs solution. The resulting slurry is stirred while cooling to O °C in an ice bath.
To this solution NaNO2 (4.25 g, 62.3 mmol, 1 eq) dissolved in 20mL of H20 and was
added. The solution was allowed to warm up to room temperature over 4 hours while
covered with a septum. [Caution]: Over time, the sealed flask builds pressure due to NOx
gases formed. The flask must be vented periodically to prevent the septum bursting off
and releasing NOx gases. After the reaction is completed, saturated K2CO3s was slowly
added while stirring until the solution was fully basified. The solution was diluted with its
equivalent volume of deionized water to approximately 2000 mL, then it was extract three
times with 600 mL of CH2Cl2. The resulting organic fractions were combined and dried
over anhydrous MgSOas then filtered and concentrated in vacuum to yield a yellow
powdery residue. This residue was purified by gradient column chromatography using
gradient silica column of 5-10% methanol in CH2Cl: yielding the pure off-white product
(8.85 g, 45.5% yield). NMR spectra match the previously reported spectra.

IH NMR (CDCl3, 499.74 MHz): § 7.29-7.26 (m, 6H), 7.25-7.20 (m, 4H), 6.99 (t, J = 1.0 Hz,
2H), 6.75 (t, J = 1.4 Hz, 2H), 5.86 (s, 2H).

13C NMR (CDCIs, 125.66 MHz): & 136.41, 135.66, 130.29, 129.34, 129.18, 128.10,
117.44, 64.84.
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Synthesis of ((8:5)-1.2-Phy-Et MeTCH)(QTf)4, 3.

QO

S
~
N

+
N,
§

GO

Diimidazole 2 (1.00 g, 3.18 mmol, 2 eq), dry acetonitrile (160 mL), and a stir bar were
added to a 250 mL round bottom flask. Ditriflatomethane (0.995 g, 3.18 mmol, 2 eq) and
dry acetonitrile (10 mL) were added to a 20 mL vial. Both solutions were cooled to 0 °C
while stirring in an ice bath. The chilled solution of ditriflatomethane (clear and colorless)
in acetonitrile was added dropwise to the stirring diimidazole solution (clear and slightly
yellow) over the course of one hour. The reaction mixture was then allowed to warm
slowly to room temperature overnight while stirring. All volatiles were then removed from
the reaction by rotary evaporation, resulting in a beige powdery film. 50 mL of THF was
then added to the beige solid resulting in a brown solution which contained a white
suspended solid. This solution was filtered through a fine porosity 30mL frit and the
collected solid was washed with an additional 50 mL of THF until filtrate was colorless.
The white powder collected was dried under high vacuum to remove lingering volatiles
resulting in pure product (0.906 g, 45.5% yield).

IH NMR (CDsCN, 499.74 MHz): § 9.54 (t, J = 1.7 Hz, 4H), 8.14 (t, J = 2.0 Hz, 4H), 7.89
(t, J = 1.9 Hz, 4H), 7.64-7.60 (m, 8H), 7.40-7.33 (m, 12H), 7.07 (s, 4H), 6.34 (s, 4H)

13C NMR (CD3CN, 125.66 MHz): § 137.83, 133.91, 131.54, 130.79, 128.96, 126.07,
122.90, 66.10, 59.92.

19F NMR (CD3CN, 470 MHz): § 77.69

IR: 3124, 3055, 2985, 1544, 1497, 1461, 1380, 1299, 1255, 1224, 1150, 1025, 954, 847,
805, 768, 749, 710, 694, 663, 650, 634 cm™.

ESI HR MS (m/z): [M-(OTf)]*: (CasHaoF9NsO9eS3)*: 1103.1936 (found), [M-(OTM)]*:
(CasHa0F9NsO9S3)*: 1103.1937 (calculated).
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Synthesis of ((8:5)-1.2-PhyEt MeTCH)(])4, 4.
B 7 40

Tetrabutylammonium iodide (0.605 g, 1.60 mmol, 4 eq), 20 mL of acetonitrile, and a stir
bar was added to a 50 mL round bottom flask. Compound 3 (0.501 g, 0.400 mmol, 1 eq)
was added as a powder to this colorless solution. The white solid slowly dissolved,
resulting in a colorless and clear solution. After 10 min of stirring a white precipitate began
to form. The solution was stirred overnight, filtered over a fine porosity 30 mL frit, washed
with an additional 30 mL of acetonitrile, and dried under high vacuum resulting in pure
product in the form of a white powder (0.466 g, 100% yield).

IH NMR (DMSO-ds, 499.74 MHz,) & 9.91 (s, 4H), 8.35 (s, 4H), 8.07 (s, 4H), 7.76 (d, J =
7.6 Hz, 8H), 7.61 (s, 4H), 7.45 (t, J = 7.7 Hz, 8H), 7.38 (t, J = 7.4 Hz, 4H), 6.65 (s, 4H).

13C NMR (DMSO-ds, 125.66 MHz): § 136.79, 132.85, 130.28, 129.65, 128.26, 124.70,
121.36, 63.39, 48.47.

19F NMR (DMSO-ds, 470 MHz): 5 No resonances observed.

IR: 3422, 3064, 1540, 1496, 1457, 1296, 1233, 1149, 1031, 924, 841, 806, 766, 745, 718,
695, 659 cm-L.

ESI HR MS (m/z): [M-I]*: (Ca2Ha0l3Ng)*:1037.0537 (found), [M-I]*: (Ca2Ha0l3Ns)*:
1037.0510 (calculated).
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Synthesis of ((5:5)-1.2-Phy-Et MeTCH)(PFg),, 5.

B @ =4 (PFg)

GO

Compound 4 (0.5006 g, 0.430 mmol, 1 eq), dimethylsulfoxide (30 mL), and a stir bar were
added to a 1 L Erlenmeyer flask. Potassium hexafluorophosphate (1.266 g, 6.878 mmol,
16 eq), DI H20 (350 ml), and a stir bar were added to a 0.5 L beaker. After both solutions
had stirred for 5 min, the KPFs solution was slowly added to the solution with compound
4 which immediately resulted in the precipitation of a white solid. This suspension was
stirred for 5 min and then filtered over a fine porosity 30 mL frit. The resulting white
powder was washed with an additional 60 mL of DI H20 and 90 mL of diethyl ether
subsequently before being dried under high vacuum until all volatiles were removed,
yielding a pure product (0.532 g, 100% yield).

IH NMR (CDsCN, 499.74 MHz): 5 8.97 (s, 4H), 7.90 (t, J = 2.0 Hz, 4H), 7.81 (t, J = 2.0
Hz, 4H), 7.56 (dd, J = 8.1, 1.5 Hz, 8H), 7.45 — 7.35 (m, 12H), 6.80 (s, 4H), 6.31 (s, 4H).

13C NMR (CD3CN, 125.66 MHz): § 137.21, 133.18, 131.74, 130.90, 129.06, 126.28,
122.79, 66.38, 59.21.

19F NMR (CDsCN, 470 MHz): § -71.73 (d, J = 707.2 Hz).

IR: 3413, 3040, 1545, 1497, 1458, 1436, 1189, 1153, 1031, 952, 830, 768, 719, 696, 660
cm.

ESI HR MS (m/z): [M-(PFs)]":(Ca2Ha0F18NsP3)*:1091.2274  (found), [M-
(PF6)]*:(Ca2HaoF18NsP3)*: 1091.2301 (calculated).
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Synthesis of [((5'5)'1'2*“2'5“ MeTCH)2Ag4](PFe)s, 6.

4(PF5)
‘E "t:
O AgAg AgAg

Silver hexafluorophosphate (0.280 g, 1.105 mmol, 2.1 eq), compound 5 (0.650 g, 0.526
mmol, 1 eq), and DMSO (10 mL) were added to a 20 mL vial. This solution was heated
to 90 °C for ten minutes and then triethylamine (0.266 g, 2.630 mmol, 5 eq) was added.
The reaction mixture was then stirred for 48 hours at 90 °C. After cooling to room
temperature, the resulting brown solution was removed from the glovebox and poured
into 200 mL of DI H20. A precipitate immediately formed and after 5 min of stirring, was
filtered over a fine porosity 15 mL frit. The collected precipitate was washed with 45 mL
of H20 followed by 45 mL of diethyl ether, and 30mL. At this point, the collected off-white
solid consists of a pure mixture of two conformers of the desired product. (0.548 g, 45%
yield).

This mixture was then washed with 30 mL of THF and 30 mL of acetonitrile, collecting
filtrates separately. Both conformers are soluble in acetonitrile, but the staggered
conformer is also slightly soluble in THF (the eclipsed conformer is not). By collecting
separately, the conformers can effectively be separated via solvent exclusion. Each of
these fractions were individually dried under high vacuum, redissolved in acetonitrile, and
crystalized via vapor diffusion of diethyl ether.

Eclipsed Conformer (6a)

IH NMR (CDsCN, 499.74 MHz): § 7.80 (s, 4H), 7.70 (s, 4H), 7.65 (s, 4H), 7.46 (s, 4H),
7.29 (d, J = 11.9 Hz, 4H), 7.26 — 7.20 (m, 16H), 7.01 — 6.92 (m, 16H), 6.89 (d, J = 7.2 Hz,
8H), 6.67 (d, J = 14.3 Hz, 4H), 6.51 (d, J = 11.9 Hz, 4H), 6.40 (d, J = 14.4 Hz, 4H).

13C NMR (CD3CN, 125.66 MHz): § 135.82, 134.40, 130.66, 130.60, 130.34, 130.14,
128.62, 128.56, 124.20, 124.15, 123.58, 123.45, 123.02, 122.98, 68.18, 68.02, 67.55.

IR: 3153, 2970, 2870, 1548, 1500, 1457, 1232, 1154, 1030, 825, 739, 696, 661 cm™.

ESI HR MS (m/z): [M-4(PFe)]**:(CsaH72Ag4N16)*":434.0592 (found), (CsaH72Ag4N1e)**
:434.0575 (calculated).

Staggered Conformer (6b)

IH NMR (CDsCN, 499.74 MHz): & 7.75 (t, J = 1.8 Hz, 4H), 7.60 (t, J = 2.0 Hz, 4H), 7.54 —
7.46 (m, 14H), 7.42 (dd, J = 6.4, 2.6 Hz, 16H), 7.22 — 7.16 (m, 9H), 7.10 (dd, J = 5.1, 1.9
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Hz, 12H), 7.03 (d, J = 11.6 Hz, 4H), 6.73 (d, J = 11.6 Hz, 4H), 6.32 (d, J = 14.5 Hz, 4H),
6.21 (d, J = 14.5 Hz, 4H).

13C NMR (CD3CN, 125.66 MHz): § 136.41, 135.31, 131.57, 131.17, 130.83, 130.66,
130.55, 129.00, 128.74, 127.98, 122.36, 122.31, 69.53, 67.19, 66.18, 63.52, 59.94.

IR: 3116, 1545, 1498, 1458, 1369, 1228, 1153, 1030, 815, 767, 740, 718, 695, 661, 639
cml,

ESI HR MS (m/z): [M-4(PFe)]**:(CsaH72Ag4N16)*":434.0584 (found), (CsaH72AgaN16)**
:434.0575 (calculated).
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Synthesis of [(($:S)1.2-Pha-Et MeTCH)Fe(CH3CN)2](PFe)2, 7.

QO™

[((S:S)-1.2-Ph2-Et, MeT CH),Ag4](PFs)4 (0.340 g, 0.147 mmol, 1 eq) and 40 mL of acetonitrile
were added to a 100 mL round bottom flask containing Felz (0.0909 g, 0.294 mmol, 2 eq).
Within 5 minutes of stirring, silver halide precipitate began to form slowly. The reaction
was stirred for 48 hours while stirring vigorously at room temperature. The reaction
mixture (now a red/yellow solution with a large amount of white precipitate) was filtered
through a Celite plug in a medium porosity 30 mL frit. All volatiles were then removed
from the filtrate under high vacuum and the resulting red solid was crystallized via vapor
diffusion of diethyl ether into acetonitrile (0.292 g, 95% yield).

Single crystals of higher quality for SCXRD analysis were obtained by vapor diffusion of
diethyl ether into benzonitrile.

IH NMR (CD3CN, 499.74 MHz): § 7.56 (s, 4H), 7.46 — 7.37 (m, 9H), 7.34 (s, 2H), 7.18 —
7.07 (m, 14H), 6.88 (d, J = 11.6 Hz, 2H), 6.79 (d, J = 11.9 Hz, 2H), 6.24 (d, J = 13.5 Hz,
2H), 5.79 (d, J = 13.3 Hz, 2H).

13C NMR (CDsCN, 125.66 MHz): § 141.06, 135.04, 130.89, 130.67, 130.28, 130.17,
129.80, 129.55, 129.21, 128.51, 128.27, 127.49, 126.70, 123.62, 122.66, 121.74, 68.74,
63.82, 63.08.

19F NMR (CD3CN, 470 MHz): § -72.82 (d, J = 706.5 Hz).

IR: 3151, 2935, 2850, 1657, 1485, 1421, 1286, 1145, 1033, 990, 940, 825, 740, 718, 677,
662 cm1.

ESI HR MS (m/z): [M]?*:(C42HzsFeNs)?*: 354.1220 (found), (Ca2HssFeNs)?*: 354.1201
(calculated).
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General Catalytic Reaction:

R R
Xmol % 7
—_——
N + 4\("): 90°C 24 hrs N

SV neat in alkene |>\(v)/

R = Methyl or Isopropyl

[((S:S)1.2-Phy-Et, MeTCH)Fe(CH3CN)2](PFs)2, 7 was added to a 20 mL vial followed by the

addition of the alkene of choice. The reaction mixture was heated to the desired
temperature and stirred for 10 min. The organic azide was then added to the reaction
which was then stabilized to the designated temperature. Once the organic azide was no
longer present (as determined by TLC) the mixture was removed from heat, filtered
through Celite and washed through with hexanes. This crude product was purified by
column chromatography on silica gel using a gradient elution of a mixture of ethyl acetate
and hexanes. The corresponding excess alkene can be recovered from the column as it
comes out with pure hexanes as eluent. The catalyst can be recovered from the celite
by washing with acetonitrile (40-60% recovery).

Control Reactions:
Control reactions following the method of the general catalytic reaction were attempted
for every reaction and tabulated concurrently.

Synthesis of 2-octyl-1-(p-tolyl)aziridine, 8.

N

S~

p-tolyl azide (0.048 g, 0.36 mmol) and 1-decene (1.53 g, 2.06 mL) were used in the
general catalytic reaction as described above and at 2% catalyst loading, yielding 0.089
g of product (55% yield). Control reaction produced 32% vyield of the aziridine. 'H and
13C NMR matched previous reports.*

Chiral UHPLC-MS: showed no enantiomeric excess (<2%).

Peak 1: eluted at 8.541 min with an area of 1,418,103,607
Peak 2: eluted at 9.133 min with an area of 1,433,327,319
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Synthesis of 2-hexyl-1-(p-tolyl)aziridine, 9.

N

S~~~

p-tolyl azide (0.063 g, 0.47 mmol) and 1-octene (1.43 g, 2.00 mL, 12.74 mmol) were used
in the General Catalytic Reaction described above and at 2% catalyst loading, yielding
0.067 g of product (65% yield). Control reaction produced 60% vyield.

IH NMR (CDCl3, 499.74 MHz): § 7.04 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.3 Hz, 2H), 2.29
(s, 3H), 2.09 — 2.00 (m, 3H), 1.66 — 1.52 (m, 4H), 1.46 — 1.39 (m, 2H), 1.35 (m, 4H), 0.93
(t, J = 7.1 Hz, 3H).

13C NMR (CDCls, 125.66 MHz): § 152.74, 131.45, 129.50, 120.64, 40.32, 34.15, 33.38,
31.97, 29.33, 27.79, 22.73, 20.76, 14.20.

HR MS (m/z): [M+H]*:(C1sH24N)*: 218.1897(found), (C1sH24N)*: 218.1909 (calculated).
Chiral UHPLC-MS: showed no enantiomeric excess (<2%).

Peak 1: eluted at 7.8659 min with an area of 95,878,004
Peak 2: eluted at 8.7907 min with an area of 98,732,044
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Synthesis of 2-hexyl-1-(o-tolyl)aziridine, 10.

=

S~~~

o-tolyl azide (0.050 g, 0.292 mmol) and 1-octene (1.43 g, 2.00 mL, 12.74 mmol) were
used in the General Catalytic Reaction described above and at 2% catalyst loading,
yielding (0.0525 g) 64% yield. Control reaction produced 52% yield.

'H NMR (CDClz, 499.74 MHz): 6 7.12 — 7.07 (m, 2H), 6.90 (td, J = 7.4, 1.3 Hz, 1H), 6.84
(d, J = 7.3 Hz, 1H), 2.35 (s, 3H), 2.12 (d, J = 1.3 Hz, 1H), 1.96 (d, J = 7.2 Hz, 1H), 1.85 —
1.78 (m, 1H), 1.55 — 1.52 (m, 2H), 1.43 — 1.38 (m, 2H), 1.37 — 1.28 (m, 6H), 0.93 — 0.89
(m, 3H).

13C NMR (CDCls, 125.66 MHz): & 152.18, 130.65, 130.55, 126.45, 122.21, 119.48,
40.16, 34.44, 33.02, 32.00, 29.39, 27.45, 22.75, 18.28, 14.22.

HR MS (m/z): [M+H]*:(C1sH24N)*: 218.1895 (found), (C1sH24N)*: 218.1909 (calculated).
Chiral UHPLC-MS: showed 3% enantiomeric excess.

Peak 1: eluted at 7.787 min with an area of 3,346,018,745
Peak 2: eluted at 8.124 min with an area of 3,546,749,954
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Synthesis of 2-hexyl-1-(2-isopropylphenyl)aziridine, 11.

N

S~~~

(2-isopropylphenyl)azide (0.067 g, 0.416 mmol) and 1-octene (1.43 g, 2.00 mL, 12.74
mmol) were used in the General Catalytic Reaction described above and at 2% catalyst
loading, yielding 0.0153 g (15% vyield).

IH NMR (CDCls, 499.74 MHz): § 7.23 (dd, J = 7.7, 1.7 Hz, 1H), 7.09 (td, J = 7.5, 1.6 Hz,
1H), 7.00 (td, J = 7.4, 1.3 Hz, 1H), 6.85 (dd, J = 7.9, 1.5 Hz, 1H), 3.53 (hept, J = 6.8 Hz,
1H), 2.16 — 2.09 (m, 2H), 2.02 (d, J = 7.2 Hz, 1H), 1.90 — 1.81 (m, 1H), 1.58 — 1.49 (m,
3H), 1.46 — 1.39 (m, 2H), 1.35 (m, 4H), 1.31 — 1.28 (m, 6H), 0.93 (t, J = 7.1 Hz 3H).

13C NMR (CDCls, 125.66 MHz): § 151.31, 141.39, 126.16, 125.89, 122.63, 119.76,
40.29, 34.41, 32.99, 31.98, 29.37, 27.31, 26.91, 23.87, 23.51, 22.74, 14.21.

HR MS (m/z): [M+H]*:(C17H27N)*: 246.2211 (found), (C1sH24N)*: 246.2222 (calculated).
Chiral UHPLC-MS: showed 4% enantiomeric excess.

Peak 1: eluted at 9.2531 min with an area of 35,730,646
Peak 2: eluted at 10.0819 min with an area of 33,075,040
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Synthesis of 2-octyl-1-(mesityl)aziridine, 12.

N

S~

Mesityl azide (0.069 g, 0.43 mmol) and 1-decene (1.48 g, 2 mL) were used in the General
Catalytic Reaction described above and at 2% catalyst loading, but no reaction was

observed with 7.
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Annotated spectra and other analytical data for compounds
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Additional single crystal X-ray structures

Figure S56. Solid state structures of 2. Blue, grey, and white ellipsoids (50% probability)
represent N, C, and H atoms, respectively. Solvent molecules and H-atoms on non-
stereogenic atoms are omitted for clarity.

Figure S57. Solid state structures of 6b. Green, blue, grey, and white ellipsoids (50%
probability) represent Ag, N, C, and H atoms, respectively. Solvent molecules, anions
and H-atoms on non-stereogenic atoms are omitted for clarity
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Computational methods

Computations were performed using DFT as implemented within the Gaussian 16
guantum-chemistry software package.® The DFT method described below is the same
as that used in our previous mechanistic study of catalytic aziridination using tetracarbene
complexes. Geometries were optimized and vibrational frequencies were calculated
using a combination of the TPSS exchange-correlation functional® 7 and the Ahlrichs
def2svp basis set? with density fitting.® Following optimization, the electronic energies of
the relaxed geometries were computed using the TPPSh functional® ' and the Ahlrichs
def2tzvpp basis set.® Dispersion corrections were added to the TPSS/def2svp and
TPSSh/def2tzvpp computations using the Grimme’s D3 method?!? with Becke-Johnson
damping parameters.’® The standard free energy of a species was calculated by adding
a free-energy correction to the electronic energy, calculated using TPSS/def2svp for the
standard conditions of 1 atm and 298 K. All electronic wavefunctions were checked for
stability and the success of geometry optimizations was verified by ensuring that
minimum-energy geometries had real vibrational frequencies whereas transition-state
geometries had a single imaginary vibrational frequency along the reaction coordinate
and real frequencies along the other coordinates. Free energies are reported relative to
the sum of free energies of the tetracarbene iron complex and reactants.

Additional computational results

Figure S58 shows the free-energy pathway for the reaction between the new tetracarbene
iron complex (7) and p-tolyl azide to form an iron imide. Overall, the p-tolyl iron imide
formed with 7 is considerably less thermally stable compared to the p-tolyl iron imides
formed with [(E*MeTCH)Fe(NCCHa)z2](PFs)2.1 In further contrast  to
[(FtMeTCH)Fe(NCCHzs)2](PFs)2, the S = 0 (singlet) p-tolyl iron imide is slightly more stable
(AG = -28.0 kcal/mol) than the S = 1 (triplet) p-tolyl imide (AG = -26.5 kcal/mol) for 7.
Finally, the free energy of activation to form the S = 1 (triplet) p-tolyl imide (AG* = 20.7
kcal/mol) is significantly greater with 7 than with [(EtMeTCH)Fe(NCCH?3)2](PFé)2.
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Figure S58. Free-energy pathway of formation of p-tolyl imide from the reaction of 7
with p-tolyl azide. The species in (S = 0) singlet state is indicated with an “*”; all other
species are in the (S = 1) triplet state.
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Table S1 shows the energetics of iron imide formation from reactions of 7 with p-tolyl
azide, 7 with o-tolyl azide, and 7 with mesityl azide. The free energy of activation to form
the iron imide (AG* = AGrts - AGa-bound azide) increases in the order p-tolyl azide < o-tolyl
azide < mesityl azide, whereas the thermal stability of the iron imide increases in the order
o-tolyl azide < p-tolyl azide < mesityl azide. We note that the (S = 1) triplet state is more
stable than the (S = 0) singlet state for o-tolyl imide and mesityl imide.

Table S1. Free energies of intermediates and transition state in the pathways to form

iron imides from reactions of 7 with p-tolyl azide, 7 with o-tolyl azide, and 7 with mesityl
azide.

Azide AGq-bound azide AGrs AGH AGimide (S = 1) AGimide (S = 0)
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

p-tolyl azide 4.5 25.2 20.7 -26.5 -28.0

o-tolyl azide 10.0 31.2 21.2 -22.7 -19.3

mesityl azide 12.1 40.0 27.9 -30.6 -25.6
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