Supporting Information to:

Indium-modified Copper nanocubes for syngas production from aqueous CO₂ electroreduction

Alessandro Niorettini¹, Raffaello Mazzaro^{2,3,*}, Fabiola Liscio³, Alessandro Kovtun⁴, Luca Pasquini², Stefano Caramori¹, Serena Berardi^{1,*}

¹ Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.

- ² Department of Physics and Astronomy, University of Bologna, Via Berti Pichat 6/2 Bologna, Italy.
- ³ CNR-IMM, Via Piero Gobetti 101, Bologna, Italy.
- ⁴ CNR-ISOF, Via Piero Gobetti 101, Bologna, Italy.

* Corresponding author: <u>serena.berardi@unife.it</u>

Table S1. Average values of the electrodes capacitance (*i.e.* the slope of the plots in Figure S1b, d, f, h and j) and the corresponding roughness factors.

Electrode	Capacitance (µF)	Roughness Factor
Cu foil	0.179	1
OD-Cu	8.8	50
OD-Cu_ln18	3.94	22
OD-Cu_In36	4.85	27
OD-Cu_In54	6.94	39

X-Ray Photoelectron Spectroscopy:

Atomic composition and binding energy of the main transition of OD-Cu_In36 and OD-Cu_In36_post are reported in Table S2.

Transition	C 1s	O 1s	Cu 2p	Cu 2p	Cu 2p	In 3d	К 2р
Chemical state	C-C	various	Cu(0)	Cu(I)	Cu(II)	ln(III)*	K+
Binding energy	285.1eV	532 eV	932.5eV	932.5eV	934.4 eV	445.2eV	293.1eV
OD-Cu	44.4 ±1.0	38.5 ±1.0	-	7.1 ±0.3	0.7 ±0.2	-	9.3 ±0.5
OD-Cu_ In36	43.8 ±1.0	51.2 ±1.0	-	0.9 ±0.2	2.3 ±0.3	1.8 ±0.1	-
OD-Cu_ In36_post	53.0 ±1.0	32.0 ±0.5	2.8 ±0.4	**	0.6 ±0.2	0.8 ±0.1	10.8 ±0.5

* In 3d 5/2 presents a relative shift between OD-Cu_In36 (445.2 eV) and OD-Cu_In36_post (444.9 eV), that corresponds to $In(OH)_3$ and In_2O_3 respectively.

** Metallic Cu(0) and Cu(I) present the same binding energy, only from Cu LMM signal is possible to qualitatively confirm the presence of both.

Figure S2. XPS signals of O 1s (a-c-e) and C 1s (b-d-f). K 2p signal was found only in OD-Cu and OD-Cu_In36_post (doublet in magenta). In (c) the In-OH/O-C peak considers both the contribution of oxygen in carbonate and the hydroxides forms of In (as well as of Cu).

Figure S3. XPS signals of Cu 2p (a) as function of time, Cu LMM (b) and In 3d 5/2, where spectra were normalized and dotted lines at 445.2 eV and 444.9 eV were added (c).

Figure S4. Faradic efficiency of the different products obtained with Cu foil (a), OD-Cu (b), OD-Cu_In54 (c) and In foil (d) cathodes as a function of the applied bias. Each bar is an average of at least two measurements. The <100% total FE observed at low potential (low current, i.e., lower amount of products) can be due to trapping of the gas products in stagnant corners of the electrochemical cell.

Table S3.	Comparison	of CO_2	reduction	nerformance	on dif	ferent Cu-In	catalysts
Table 55.	companson	01 CO2	reduction	periormance	on un		catarysts.

Synthesis	Morphology	Phase(s)	Products (% FE) ^{a,b}	J _{max}	Ref.
Reductive electrodeposition of In(NO₃)₃ on OD- Cu (obtained by fast square wave anodization)	Textured nanocubes (<1 μm)	Cu/Cu₂O + In(OH)₃	@ -0.62 V vs RHE, ^c : * For OD-Cu_In36: <u>syngas</u> (46% H ₂ and 48% CO => H ₂ /CO ratio ≈ 1) * For OD-Cu_In18: <u>syngas</u> (59% H ₂ and 29% CO => H ₂ /CO ratio ≈ 2)	@ -0.62 V vs RHE: J,tot > 3.5 mA/cm ²	This work
Reductive electrodeposition of InSO₄ on OD-Cu (obtained by thermal oxidation)	Irregular grains (100-500 nm) from agglomeration of 50 nm nanoparticles	Cu ₁₁ In ₉ alloy	@ -0.7 V vs RHE: <u>CO</u> (95%) HCOOH (ca. 3%) H ₂ (<2%)	@ -0.7 V vs RHE: J,tot = -1.7 mA/cm ²	[1]

Near Infrared-	Nanoparticles	* For	@ -0.7 V vs RHE, ^d :	@ -0.7 V vs RHE:	[2]
driven	(ca. 100 nm	Cu _{0.75} In _{0.25} :	* For Cu _{0.75} In _{0.25} :	J,CO ≈ -2 mA/cm ²	
decomposition of	average	Cu₂In	<u>CO</u> (80%)		
mixed metal	diameter)	phase	H2 (20%)		
precursors on Ti					
(different					
compositions					
obtained)					
In situ reduction	For both	Evolved	For the evolved	@ -0.6 V vs RHE:	[3]
of:	materials:	catalyst	cat:	J,CO ≈ -1 mA/cm ²	
(a) CuInO₂ and	Structural	(for both	@ -0.6 V vs RHE:	J,tot \approx -1.8 mA/cm ²	
(b) In ₂ O ₃ /Cu	evolution	materials):	<u>CO (</u> 55%)		
both deposited on	during CO ₂	Cu core +	HCOO ⁻ (ca. 5%)		
carbon black	reduction	In(OH)₃	H ₂ (ca. 40%)		
		shell			
Electrodeposition	Dendritic	* If In	@ -1 V vs RHE:	@ -0.8/-1.1 V vs RHE:	[4]
from In ₂ (SO ₄) ₃ +		<25% →	* For 40% In:	$J,HCOO^{-} < -1 mA/cm^{2}$	
CuSO₄ on Au-		Cu(111)	<u>HCOO⁻</u> (49%)		
sputtered Si.		* If ca.	syngas (36% H ₂ and		
Different		38% In →	14% CO => H ₂ /CO		
deposition		Cu_9In_4 and	ratio = 2.6)		
potential results in		Cu ₁₁ In ₉	* For 80% In:		
different Cu/In			<u>HCOO⁻ (62%)</u>		
ratios			CO (ca. 5%)		
			H₂ (ca. 25%)		
Cu(OH)₂ nanowires	Nanowires (10	Metallic	@-0.6 V vs RHE:	@ -0.6 V vs RHE:	[5]
dipped in an InCl₃	μm av. length)	Cu and	* For 20% In:	J,CO = -1.5 mA/cm ²	
solution +	with porous	metallic In	<u>CO</u> (93%)		
dehydration	structure of Cu		H ₂ (ca. 4%)		
	nanograins (10-		HCOO ⁻ (ca. 3%)		
	30 nm) covered				
	by a < 5 nm				
	layer of In				
Electrochemical	Large particle	Cu ₁₁ In ₉ ,	@-0.8 V vs RHE:	@-0.8 V vs RHE:	[6]
reduction of	aggregates with	$Cu_7 In_3$ and	<u>CO</u> (70%)	J,tot = -2 mA/cm ²	
CuInO ₂ deposited	some small	Cu	HCOO ⁻ (19%)		
on carbon paper	porosity		H ₂ (<10%)		
	1			1	

^a Unless otherwise stated, all data are obtained in CO₂-saturated 0.1 M KHCO₃ aqueous solution; ^b Main product underlined; ^c Data obtained in CO₂-saturated 0.5 M KHCO₃ aqueous solution; ^d Data obtained in CO₂-saturated 0.5 M NaHCO₃ aqueous solution.

Figure S5. Stepped chronoamperometry experiments performed for the accumulation of the products obtained with OD-Cu_In36 (a) and OD-Cu_In18 (b). In particular, the cathodes were stepped between the bias reported in the graphs (for 300 s) and the open circuit potential, OCP (for 40 s). (c) Faradaic efficiency for CO production for a pristine OD-Cu_In36 compared with those of the same cathode after 1 or 2 etching cycles aimed at removing the $In(OH)_3$ phase. Each etching cycle consists in 15-min immersion of the cathode in 1 M H₂SO₄ aqueous solution.

Figure S6. (a) Grazing-incidence X-ray diffractograms of OD-Cu_In54 before (black trace) and after (red trace) CO₂R experiments. **(b)** EDS spectra registered on a wide sample area identified by TEM, reporting relative Cu, O and In atomic content in the inset for OD-Cu_In54 before (top) and after (bottom) CO₂R experiments. Comparison based on OD-Cu_In54 sample to enhance the role of In-deposition on the materials structure upon exposure to CO₂R working conditions.

after CO₂R experiments. In the inset, d-spacing corresponding to lattice reflections compatible with Cuprite phase.

References:

[1] S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo and K. Takanabe, *Angewandte Chemie*, 2015, **127**, 2174-2178

[2] J. He, K. E. Dettelbach, D. A. Salvatore, T. Li and C. P. Berlinguette, *Angewandte Chemie*, 2017, **129**, 6164-6168

[3] G. n. O. Larrazábal, A. J. Martín, S. Mitchell, R. Hauert and J. Pérez-Ramírez, ACS Catalysis, 2016, 6, 6265-6274

[4] Z. B. Hoffman, T. S. Gray, K. B. Moraveck, T. B. Gunnoe and G. Zangari, ACS Catalysis, 2017, 7, 5381-5390

[5] W. Luo, W. Xie, R. Mutschler, E. Oveisi, G. L. De Gregorio, R. Buonsanti and A. Züttel, *ACS Catalysis*, 2018, **8**, 6571-6581

[6] A. Jedidi, S. Rasul, D. Masih, L. Cavallo and K. Takanabe, *Journal of Materials Chemistry A*, 2015, **3**, 19085-19092