Supporting Information

Synthesis, Characterization, X-ray and Electronic Structures of Diethyl Ether and 1,2-Dimethoxyethane Adducts of Molybdenum(IV) Chloride and Tungsten(IV) Chloride

Thomas E. Shaw,^{a,b} Timothy J. Diethrich,^c Charlotte L. Stern,^d Brian L. Scott,^e Titel Jurca^{a,b*}Thomas M. Gilbert^{f*}, and Alfred P. Sattelberger^{a*}

^a Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA.

^b Renewable Energy and Chemical Transformations (REACT) Cluster, University of Central Florida, Orlando, FL 32816 USA.

^c Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 USA.

^d Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208 USA.

^e Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545 USA.

^fDepartment of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115 USA.

Table of Contents

Materials and Methods (p 3).

Table S1 (p 6). Crystallographic data for 1, 2, and 4 at 297K (1) and 100K (2, 4)

Table S2 (p 7). Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for **Table S3 (p 7).** Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for **Table S4 (p 8).** Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for **Table S5 (p 9).** Bond lengths [Å] and angles [°] for

 Table S6 (p 10). Bond lengths [Å] and angles [°] for 2

Table S7 (p 11). Bond lengths [Å] and angles [°] for 4

Table S8 (p 12). Anisotropic displacement parameters ($Å^2 x 10^3$) for 1

Table S9 (p 12). Anisotropic displacement parameters ($Å^2 x 10^3$) for 2

Table S10 (p 13). Anisotropic displacement parameters ($Å^2 \times 10^3$) for 4

Table S11 (p 14). Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 1

Table S12 (p 14). Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 2

Table S13 (p 15). Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 4

Table S14 (p 16–17). Calculated raw and relative energetics for singlet and triplet states and *cis*– and *trans*– isomers of $MCl_4(dme)$, $MCl_4(OEt_2)_2$, $MCl_4(OH_2)_2$, $MCl_4(OMeH)_2$, and $MCl_4(OMe_2)_2$ (M = Mo, W) using various model chemistries.

Table S15 (p 18). Experimental and calculated bond distances (pm) for $MCl_4(dme)$ and *cis*– and *trans*- $MCl_4(ORR')_2$ (M = Mo, W; R, R' = H, Me, Et) using various DFT models and the def2-TZVP basis set. The basis set was def2-TZVP in all cases. The ether ligands are considered to be in the equatorial plane, so Cl_{eq} atoms are *trans* to ether O atoms, while Cl_{ax} atoms are *cis* to ether O atoms. Values are averaged for bonds of the same type.

Table S16 (p 19). Calculated (TD, nm) electronic transition energies for $MCl_4(dme)$ and *trans*- $MCl_4(OEt_2)_2$ (M = Mo, W) using various model chemistries. Band positions are generally approximated within 10 nm, owing to a choice of a peak width at half height = 30 nm.

Table S17 (p 20). Calculated (TD–ULC-M06L/def2TZVP, SCRF=toluene, nm) electronic transitionwavelengths for $MCl_4(dme)$ and *trans*- $MCl_4(OEt_2)_2$ (M = Mo, W).

Table S18 (p 21-24). Optimized Cartesian coordinates (UM06L+GD3/def2-TZVP) for all triplet MCl_4L_2 complex molecules examined (M = Mo, W).

Figure S1 (p 25). ¹H NMR Spectrum of *trans*-MoCl₄(OEt₂)₂ in d₈-toluene.

Figure S2 (p 25). Thermal ellipsoid plot and labelling scheme of 4.

Figure S3 (p 26-27). Gouy Susceptibility Calculations

Figure S4 (p 27-28). SQUID Data Calculations

Figure S5 (p 29). Calculated frontier a molecular orbitals for triplet trans-MoCl₄(OEt₂)₂ (C_{2h} symmetry,

UBLYP+GD3/def2-TZVP, isovalue = 0.04)

References (p 30).

Materials and Methods

General Comments

All chemical manipulations were carried out using standard Schlenk and glovebox techniques in ultrahigh purity (UHP) nitrogen environments. 3Å molecular sieves were purchased from Fisher Scientific and dried at 150 °C for 24 h before pumping into the glovebox. Basic alumina (50-200 μ m) was purchased from Acros Organics and was activated by heating to 220 °C while pumping under vacuum (5 x 10⁻³ torr) for 12 h. Diethyl ether and hexanes were collected from an mBraun solvent purification system (SPS). 1,2-dimethoxyethane (TCI) was pumped into the glovebox upon delivery and dried over activated basic alumina for 24 h prior to use. Molybdenum pentachloride (99.5%) was used as received from Beantown Chemical. Tungsten tetrachloride (97%) was used as received from Strem Chemicals. Allyltrimethylsilane (> 98%) was purchased from TCI and dried over 3Å molecular sieves for 24 h prior to use. The purity of the organic reagents was checked via ¹H NMR. Elemental analyses (C, H, Cl) were performed by Galbraith Laboratories, Inc., Knoxville, TN. ¹H NMR spectra were collected on a Bruker Avance III HD 600 equipped with a cryoprobe. UV-Vis measurements were conducted with an Agilent Cary 60 spectrophotometer using an air-free cuvette sealed under UHP N₂.

Synthesis

MoCl₄(**OEt**₂)₂ (1). Inside the glovebox, MoCl₄(OEt₂)₂ was prepared as described by Persson and Andersson.¹ The only deviation from their reported procedure was that the addition of allyltrimethylsilane to the MoCl₅/diethyl ether suspension was done at -35 °C inside the glovebox instead of -78 °C. Starting with 9.3 g of MoCl₅, 12 g (90% yield, based on MoCl₅) of rust orange powder was isolated on a medium porosity filter frit and washed first with 2 x 30 mL of diethyl ether and then 30 mL of hexanes prior to drying under reduced pressure. We note that green MoOCl₃(OEt₂)₂ is present as a byproduct (< 10%), but it is highly soluble in diethyl ether and readily separated from the desired MoCl₄(OEt₂)₂.² ¹H NMR (600 MHz, toluene-d₈; δ , ppm): 21.55 (s, 4H), 8.76 (s, 6H). **MoCl**₄(**dme**) (2). Inside the glovebox, MoCl₄(dme) was prepared by dissolving MoCl₄(OEt₂)₂ in minimal dme (~10 mL per gram of solid). The solid adduct is isolated in ≥ 90% yield from the dme solution by slowly adding an acual volume of perture.

an equal volume of pentane. The solid is isolated by filtration, washed with pentane, and dried under reduced pressure. ¹H NMR (600 MHz, toluene-d₈; δ , ppm): 16.32 (s, 6H), 1.17 (s, 4H). Anal., Calcd. for C₄H₁₀O₂Cl₄Mo: C, 14.65; H, 3.06; Cl, 43.25. Found: C, 14.51; H, 2.87; Cl, 43.17.

WCl₄(OEt₂)₂ (**3**). Scintillation vial-scale reactions to obtain WCl₄(OEt₂)₂ were conducted as described by Shaw, *et al.*³ Inside the glovebox, commercial (Strem Chemicals) WCl₄ was ground with an agate mortar and pestle for several minutes. Then, 100 mg of the ground WCl₄ were added to a scintillation vial along with 20 mL of dry diethyl ether. The vial was left to sit in the glovebox overnight which led to the formation of dark yellow, crystalline WCl₄(OEt₂)₂ in the bottom of the vial amidst some unreacted WCl₄. ¹H NMR (500 MHz, toluene-d₈; δ , ppm): 14.42 (q, 4H, CH₂), 5.08 (t, 6H, CH₃).

WCl₄(dme) (4). Inside the glovebox, commercial WCl₄ was ground as noted above. Then, a 125 mL Erlenmeyer flask was charged with 5 g of the freshly ground powder and approximately 100 mL of dme and left to stir, at room temperature, overnight in the glovebox. The solution gradually changes from a purple suspension to a verdant green solution that may appear to have a blue hint due to small amounts of unreacted WCl₄. The next day, the solution was filtered through a layer of Celite on a 30 mL fine porosity frit to remove any unreacted WCl₄. The solution was then stripped, affording 6.2 g of brown solid WCl₄(dme) (97%). ¹H NMR (600 MHz, toluene-d₈; δ , ppm): 9.93 (s, 6H), 0.77 (s, 4H). Anal., Calcd. for C₄H₁₀O₂Cl₄W: C, 11.55; H, 2.42; Cl, 34.10. Found: C, 11.39; H, 2.24; Cl, 34.16.

Single Crystal X-ray Diffraction Studies

Single crystals of 1 suitable for X-ray diffraction studies were obtained via the dissolution of the red-orange product in a minimal amount of toluene to obtain a saturated solution. This solution was then allowed to sit in the glovebox freezer (-35 °C) overnight, during which time dark red trapezoidal crystals of 1 formed. Single crystals of 2 were obtained by charging a Celite/glass wool plug in a disposable pipette with ca. 100 mg of MoCl₄(OEt₂)₂ and passing ~3 mL of dme over the solid into a medium sized vial. This vial of freshly prepared MoCl₄(dme) was then placed inside of a 22 mL scintillation vial charged with ~5 mL of hexane and sealed. This vapor diffusion crystallization was allowed to sit, unperturbed, in the glovebox at room temperature for three days, providing well-formed orange needles of 2. Single crystals of 4 were obtained by taking approximately 700 mg of freshly ground WCl₄ and allowing it to sit in a scintillation vial charged with approximately 10 mL of fresh dme overnight. Well-formed, yellow blocks were observed amidst a bed of unreacted WCl4. X-Ray diffraction studies of 1 were conducted on a Rigaku XtaLAB Mini III two-circle diffractometer using a Mo K α ($\lambda = 0.71073$ Å) fine-focus sealed X-ray tube source and a graphite monochromator detector at 298.1(5) K. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the XL refinement package using Least Squares minimization.⁴⁻⁶ X-Ray diffraction studies of 2 and 4 were conducted on a Rigaku XtaLAB Synergy, single source at offset/far, HyPix diffractometer with Mo K α ($\lambda = 0.71073$ Å) micro-focus sealed X-ray tube PhotonJet source and a mirror detector at 100 K. Using Olex2, the structures were solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the XL refinement package using Least Squares minimization.4-6

Magnetic Susceptibility

Gouy magnetic susceptibility measurements were conducted on a benchtop MSB MK1, calibrated with an aqueous solution of $MnCl_2$ (Sherwood Scientific, Ltd). Samples of MCl_4 (dme) (M = Mo. W) were loaded into Gouy tubes inside the glovebox and capped with rubber stoppers. The measurements were conducted at 25 °C. A 122 mg sample of **2** was packed to a height of 1.90 cm in the sample tube, which produced a blank reading of -36 cgs. Both the sample and the tube produced a reading of +346 cgs. A 181 mg sample of **4** was packed to a height of 2.03 cm in a second sample tube, which produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a blank reading of -36 cgs. Both the sample and the tube produced a reading of +135 cgs. SQUID magnetometry measurements were obtained with a 7 Tesla Quantum Design Superconducting Quantum Interference Device (MPMS3). Approximately 65 mg of MCl₄(dme) (M = Mo, W) powder were added to a capsule in an argon glovebox. This capsule was then removed from the glovebox and quickly inserted into the MPMS for temperature dependent susceptibility measurements down to 2 K.

Computational Methods

Optimizations and frequency analyses were performed using the Gaussian (G09⁷) suite. A sizable integration grid (keyword Int=UltraFineGrid) was used in all cases. The title molecules as well as cis-MCl₄(OEt₂)₂ (M = Mo, W) were initially fully optimized as spin singlets and spin triplets at the UM06L+GD3/def2-SVP level, then at the UM06L+GD3/def2-TZVP level.⁸⁻¹⁰ Convergence of the spin singlet wavefunctions for the MCl₄L₂ required use of a quadratic converger (Keyword SCF=XQC). Stationary points were confirmed as minima using frequency calculations.

The restricted singlet wavefunctions showed RHF \rightarrow UHF instabilities. Consequently, subsequent optimizations using different local DFT approaches were performed with the molecules as unrestricted spin triplets (Supporting Information, Table S14). These were done to provide computational "error bars" for the energetics and bond distances.¹¹ Local DFT models were employed based on findings from Truhlar and co-workers that they perform better than hybrid models for transition metal compounds/complexes.¹² Frontier α orbitals from the triplet calculations were visualized using Avogadro.¹³

We noted that the three DFT models employed gave different predictions of *cis/trans* preferences for $MoCl_4(OEt_2)_2$. To arbitrate this, we performed optimizations and DLPNO-UCCSD(T)//UM06-2X+GD3/def2-TZVP and DLPNO-UCCSD(T)//UPBEPBE+GD3/def2-TZVP single point energy calculations¹⁴⁻¹⁶ on *cis*- and *trans*-MCl₄(ORR')₂ (M = Mo, W; ORR' = OH₂, OMeH, OMe₂) and DLPNO-UCCSD//UM06-2X+GD3/def2-TZVP and DLPNO-UCCSD//UPBEPBE+ GD3/def2-TZVP single point energy calculations on *cis*- and *trans*-MCl₄(OEt)₂ using the ORCA program.¹⁷⁻¹⁸ (The latter were too resource-intensive to allow calculating coupled cluster triples corrections). These employed auxiliary basis sets for Coulomb and correlation corrections.¹⁹⁻²⁰ The single point energies differed little regardless of the starting structure (see Supporting Information Table S14) or inclusion of triples corrections. They agreed best overall with the UPBEPBE-determined energies and *cis/trans* preferences. Consequently, energetics discussed below will involve the DLPNO-UCCSD//UPBEPBE+GD3/def2-TZVP data.

Absorption spectra were modeled using time-dependent density functional theory (TDDFT). Only the title molecules were examined. Several models were employed to determine which performed best (Supporting Information, Tables S15-S16). Very low energy *d-d* transitions were expected, so the number of states to be included in the calculations was set to 25. This ensured that transitions between 300–700 nm (the experimental spectrum limits) were included, with some loss of accuracy due to intruder states. The lowest energy transitions analyzed as *d-d* transitions, with energies 2000–5000 nm. The title molecules were also optimized and TD-analyzed at the ULC-BLYP/def2-TZVP and ULC-M06L/def2-TZVP levels with a self-consistent reaction field modeling the toluene solvent (Keyword SCRF Solvent=toluene). The overlaid experimental and theoretical UV-Vis graphic was generated using Kaleidagraph for Macintosh.²¹

X-Ray Crystallography

 Table S1. Crystallographic data for all crystalline habits 1-3.

		1	2	4
Empirical formula	C_8H_2	₀ Cl ₄ MoO ₂	$C_4H_{10}CI_4MoO_2$	$C_4H_{10}CI_4WO_2$
Formula weight	385.	98	327.86	415.77
Temperature	298.	1(5) K	100.00(10) K	100.00(10) K
Wavelength	0.71	073 Å	0.71073 Å	0.71073 Å
Crystal system	Mon	oclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/1$	ı	Cc	Cc
a, b, c (Å)	7.59	56(2),	8.0686(5),	8.0766(2),
	11.4	732(4),	11.3057(6),	11.3089(2),
	9.01	93(3)	11.6997(6)	11.7413(3)
α, β, γ (°)	90, 90	106.347(3),	90, 90.519(5), 90	90, 90.687(2), 90
Volume (Å ³)	754.	22(4)	1067.22(10)	1072.34(4)
Ζ	2		4	4
Density (calculated) (mg/m ³)	1.70	0	2.041	2.575
Absorption coefficient (mm ⁻¹)	1.56	0	2.185	11.724
R(int)	0.01	99	0.0389	0.0358
Absorption correction method	Anal	ytical	Gaussian	Gaussian
Data/restraints/par ameters	2234	/0/73	2068/2/102	3809/2/102
Goodness-of-Fit on F ²	1.06	7	1.166	1.052
$R_1 (I > 2\sigma(I))$	0.02	12	0.0372	0.0224
wR ₂ (all data)	0.05	16	0.1093	0.0558
Largest diff. peak and hole (e.Å ⁻³)	0.44	and -0.42	0.486 and -0.815	2.322 and -0.760

	X	У	Z	U(eq)
Mo1	5000	5000	5000	27.36(7)
C12	4992.3(7)	3729.4(4)	7057.4(5)	46.66(12)
C11	1872.4(6)	4626.5(5)	3796.2(6)	48.42(12)
O1	5717.4(15)	3624.5(10)	3799.6(13)	34.6(3)
C3	4791(2)	2483.9(15)	3613(2)	42.1(4)
C1	7190(2)	3718.0(16)	3026(2)	41.6(4)
C2	6481(3)	3603(2)	1311(2)	60.4(6)
C4	6032(3)	1525.7(18)	4386(3)	61.9(6)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S3. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for **2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
Mo1	5719.8(7)	2344.4(5)	5022.4(6)	13.4(2)
C11	5453(3)	1448.8(19)	3234.5(16)	20.3(5)
C12	7216(4)	799(2)	5799(2)	32.9(6)
C13	8044(3)	3422(2)	4555(2)	26.7(5)
Cl4	5359(3)	3306.7(17)	6765.1(16)	18.5(5)
O1	3313(9)	1597(5)	5383(5)	19.7(13)
O2	4030(7)	3647(5)	4344(5)	14.5(12)
C1	3029(17)	877(8)	6387(9)	32(3)
C2	1975(15)	2455(8)	5218(10)	24(2)
C3	2375(12)	3172(7)	4172(8)	20.3(19)
C4	4444(11)	4502(8)	3471(7)	18.8(18)

	X	У	Ζ	U(eq)
W1	1332.5(5)	7363.7(2)	4805.1(4)	15.76(6)
C11	1620.6(18)	8327.1(13)	3055.7(12)	20.8(3)
C12	-172(2)	5811.1(17)	4023.1(15)	34.9(4)
C13	-998.5(19)	8443.9(18)	5285.3(15)	29.2(3)
C14	1569.4(19)	6455.0(14)	6588.2(12)	23.4(3)
O1	3726(6)	6631(4)	4434(4)	22.4(9)
O2	3021(5)	8653(4)	5477(4)	18.1(8)
C1	4000(11)	5894(7)	3433(6)	36.0(17)
C2	5082(10)	7481(6)	4606(8)	25.8(14)
C3	4695(7)	8195(6)	5638(6)	23.2(12)
C4	2630(8)	9509(6)	6354(6)	25.5(12)

Table S4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for 4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

 Table S5. Bond lengths [Å] and angles [°] for 1.

0 1 1				
$Mo(1)-Cl(2)^{1}$	2	$Cl(2)-Mo(1)-Cl(2)^{1}$	180.0	
Mo(1)-Cl(2)	2	Cl(1)-Mo(1)-Cl(2) ¹	88.588(18)	
Mo(1)-Cl(1)	2	$Cl(1)^{1}-Mo(1)-Cl(2)$	88.589(18)	
Mo(1)-Cl(1) ¹	2	Cl(1) ¹ -Mo(1)-Cl(2) ¹	91.411(18)	
Mo(1)-O(1)	2	Cl(1)-Mo(1)-Cl(2)	91.412(18)	
Mo(1)-O(1) ¹	2	$Cl(1)^{1}-Mo(1)-Cl(1)$	180.0	
O(1)-C(3)	1	O(1) ¹ -Mo(1)-Cl(2) ¹	89.98(3)	
O(1)-C(1)	1	O(1)-Mo(1)-Cl(2)	89.98(3)	
C(3)-C(4)	1	O(1) ¹ -Mo(1)-Cl(2)	90.02(3)	
C(1)-C(2)	1	O(1)-Mo(1)-Cl(2) ¹	90.02(3)	
		O(1)-Mo(1)-Cl(1) ¹	90.00(3)	
		O(1) ¹ -Mo(1)-Cl(1)	90.00(3)	
		O(1)-Mo(1)-Cl(1)	90.00(3)	
		O(1) ¹ -Mo(1)-Cl(1) ¹	90.00(3)	
		O(1)-Mo(1)-O(1) ¹	180.00(5)	
		C(3)-O(1)-Mo(1)	123.31(9)	
		C(3)-O(1)-C(1)	114.25(12)	
		C(1)-O(1)-Mo(1)	122.43(10)	
		O(1)-C(3)-C(4)	112.58(15)	
		O(1)-C(3)-C(4)	112.46(15)	

Symmetry transformations used to generate equivalent atoms: (1) ¹1-X,1-Y,1-Z

Mo(1)- Cl(1)	2 Cl(2)-Mo(1)-Cl(1)	93.90(8)
Mo(1)-Cl(2)	2 Cl(2)-Mo(1)-Cl(3)	94.01(10)
Mo(1)-Cl(3)	2 Cl(2)-Mo(1)-Cl(4)	94.48(8)
Mo(1)-Cl(4)	2 Cl(3)-Mo(1)-Cl(1)	94.88(9)
Mo(1)-O(1)	2 Cl(3)-Mo(1)-Cl(4)	93.97(8)
Mo(1)-O(2)	2 Cl(4)-Mo(1)-Cl(1)	167.35(9)
O(1)-C(1)	1 O(1)-Mo(1)-Cl(1)	85.99(17)
O(1)-C(2)	1 O(1)-Mo(1)-Cl(2)	95.45(18)
O(2)-C(3)	1 O(1)-Mo(1)-Cl(3)	170.42(17)
O(2)-C(4)	1 O(1)-Mo(1)-Cl(4)	83.80(17)
C(2)-C(3)	1 O(2)-Mo(1)-Cl(1)	85.02(16)
	O(2)-Mo(1)-Cl(2)	172.28(18)
	O(2)-Mo(1)-Cl(3)	93.70(16)
	O(2)-Mo(1)-Cl(4)	85.41(16)
	O(2)-Mo(1)-O(1)	76.9(2)
	C(1)-O(1)-Mo(1)	121.8(7)
	C(1)-O(1)-C(2)	111.0(8)
	C(2)-O(1)-Mo(1)	112.2(5)
	C(3)-O(2)-Mo(1)	112.1(5)
	C(4)-O(2)-Mo(1)	124.6(5)
	C(4)-O(2)-C(3)	111.6(7)
	O(1)-C(2)-C(3)	107.5(9)

O(2)-C(3)-C(2) 106.9(8)

Table 57. Dona lengths [71] and angles [10]	7. Dona lenguis $ A $ and angles $ $ 101 T	101 4.
---	---	--------

W(1)- Cl(1)	2 Cl(2)-W(1)-Cl(1)	93.57(6)
W(1)-Cl(2)	2 Cl(2)-W(1)-Cl(3)	94.13(8)
W(1)-Cl(3)	2 Cl(2)-W(1)-Cl(4)	93.36(6)
W(1)-Cl(4)	2 Cl(3)-W(1)-Cl(1)	93.31(6)
W(1)-O(1)	2 Cl(3)-W(1)-Cl(4)	94.11(6)
W(1)-O(2)	2 Cl(4)-W(1)-Cl(1)	169.45(6)
O(1)-C(1)	1 O(1)-W(1)-Cl(1)	84.40(13)
O(1)-C(2)	1 O(1)-W(1)-Cl(2)	95.51(14)
O(2)-C(3)	1 O(1)-W(1)-Cl(3)	170.20(13)
O(2)-C(4)	1 O(1)-W(1)-Cl(4)	87.03(13)
C(2)-C(3)	1 O(2)-W(1)-Cl(1)	86.36(12)
	O(2)-W(1)-Cl(2)	172.01(13)
	O(2)-W(1)-Cl(3)	93.85(12)
	O(2)-W(1)-Cl(4)	85.68(12)
	O(2)-W(1)-O(1)	76.52(17)
	C(1)-O(1)-W(1)	121.9(5)
	C(1)-O(1)-C(2)	111.3(6)
	C(2)-O(1)-W(1)	113.0(4)
	C(3)-O(2)-W(1)	113.0(4)
	C(4)-O(2)-W(1)	124.9(4)
	C(4)-O(2)-C(3)	110.8(5)
	O(1)-C(2)-C(3)	107.6(6)

Table S8. Anisotropic displacement parameters (Å² x 10³) for 1. The anisotropic displacement factor exponenttakes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	24.72(10)	28.86(11)	29.84(10)	1.48(7)	9.86(7)	-1.86(7)
Cl2	61.6(3)	41.8(2)	42.0(2)	10.94(18)	23.3(2)	1.8(2)
Cl1	27.25(19)	58.9(3)	55.8(3)	-8.3(2)	6.34(17)	-4.51(18)
01	33.1(6)	32.3(6)	43.1(6)	-3.7(5)	18.2(5)	-3.9(5)
C3	42.5(9)	34.5(9)	49.2(10)	-5.5(7)	12.7(8)	-9.4(7)
C1	36.3(8)	43.6(10)	51.4(10)	-3.4(8)	23.0(8)	0.4(7)
C2	72.0(14)	69.2(15)	47.8(11)	-0.8(10)	29.7(10)	3.5(11)
C4	72.0(14)	37.9(11)	73.3(15)	5.1(10)	16.6(12)	0.6(10)

Table S9. Anisotropic displacement parameters (Å² x 10³) for **2**. The anisotropic displacement factor exponent takes the form: $-2p^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mo1	14.2(4)	15.3(3)	10.8(3)	-1.5(3)	-1.2(2)	4.6(3)
Cl1	24.4(11)	22.7(11)	13.7(9)	-6.3(7)	-1.0(8)	6.1(8)
Cl2	51.5(17)	25.0(11)	22.0(11)	-2.6(8)	-10.0(11)	23.5(11)
C13	12.8(11)	41.8(13)	25.4(11)	-4.5(9)	1.5(8)	-3.0(9)
Cl4	27.9(12)	15.8(9)	11.8(9)	-3.0(7)	-0.7(8)	0.4(8)
01	25(4)	15(3)	19(3)	1(2)	8(3)	0(2)

02	8(3)	17(3)	18(3)	2(2)	-2(2)	1(2)
C1	55(8)	19(4)	23(5)	1(4)	12(5)	-7(5)
C2	20(6)	22(4)	29(6)	-1(3)	2(5)	-4(4)
C3	16(5)	20(4)	25(4)	-2(3)	-1(4)	-1(3)
C4	13(4)	25(4)	19(4)	9(3)	4(3)	3(4)

Table S10. Anisotropic displacement parameters (Å² x 10³) for 4. The anisotropic displacement factorexponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
W1	16.73(10)	16.94(9)	13.60(9)	1.18(18)	-0.95(6)	-4.26(18)
C11	30.3(7)	17.9(6)	14.2(5)	2.2(4)	0.1(5)	0.0(5)
C12	50.4(11)	28.8(8)	25.3(7)	2.0(6)	-10.5(7)	-20.1(7)
C13	15.8(6)	43.6(10)	28.1(7)	2.5(7)	1.0(5)	3.1(6)
Cl4	28.7(7)	25.4(7)	16.2(6)	5.5(5)	-0.1(5)	-6.4(5)
01	29(2)	17(2)	22(2)	1.5(16)	4.4(17)	4.1(17)
02	15.8(18)	20.4(19)	18.2(19)	-1.2(15)	-2.0(14)	-2.5(15)
C1	61(5)	23(3)	25(3)	-3(2)	10(3)	6(3)
C2	18(3)	25(3)	34(4)	1(2)	8(3)	3(2)
C3	13(2)	27(3)	31(3)	0(2)	-1(2)	1(2)
C4	24(3)	26(3)	27(3)	-9(2)	3(2)	-2(2)

	X	У	Z	U(eq)
H3A	4321.09	2309.38	2520.41	51
H3B	3755.49	2524.35	4041.01	51
H1A	8094.04	3113.99	3419.05	50
H1B	7795.59	4466.16	3274.96	50
H2A	7433.3	3804.25	847.63	91
H2B	5455.18	4117.28	933.06	91
H2C	6098.1	2813.68	1049.87	91
H4A	7013.31	1444.42	3915.92	93
H4B	5353.13	809.79	4277.06	93
H4C	6530.01	1704.37	5462.45	93

Table S11. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 1.

Table S12. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 2.

	X	У	Z	U(eq)
H1A	3905.47	280.03	6454.99	48
H1B	1951.07	482.48	6315.54	48
H1C	3037.82	1379.67	7069.11	48
H2A	1890.14	2976.89	5894.23	28
H2B	903.64	2040.04	5110.94	28

H3A	2337.34	2666.16	3481.14	24
H3B	1563.78	3821.72	4073.64	24
H4A	5513.72	4868.62	3657.85	28
H4B	3584.11	5113.64	3435.55	28
H4C	4515.05	4104.18	2729.1	28

Table S13. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 4.

	X	У	Z	U(eq)
H1A	3189.63	5249.06	3416.85	54
H1B	5121.01	5563.42	3468.29	54
H1C	3873.37	6374.53	2743.18	54
H2A	5176.88	8003.08	3932.48	31
H2B	6144.57	7057.72	4715.46	31
H3A	4757.34	7694.5	6329.45	28
H3B	5493.74	8853.46	5725.19	28
H4A	1551.69	9869.68	6183.28	38
H4B	3483.9	10124.15	6376.29	38
H4C	2588.94	9110.84	7094.35	38

Table S14. Calculated raw and relative energetics for singlet and triplet states and *cis*- and *trans*-isomers of $MCl_4(dme)$, $MCl_4(OEt_2)_2$, $MCl_4(OH_2)_2$, $MCl_4(OMeH)_2$, and $MCl_4(OMe_2)_2$ (M = Mo, W) using various model chemistries.

	UM06LGD3	UM06LGD3	UM06LGD3	UBLYPGD3	UPBEPBEGD3
	def2SVP				
	ZPE	def2SVP	def2TZVP	def2TZVP	def2TZVP
cis-MoCl4(OEt2)2 singlet	0.283088	-2375.605890	-2376.723854		
trans-MoCl4(OEt2)2 singlet	0.282835	-23/5.614/19	-23/6/29/82		
trans-cis		-23.8	-10.2		
cis-MoCl4(OEt2)2 triplet	0.282907	-2375.634708	-2376 752406	-2376.582072	-2375.475688
trans-MoCl4(OEt2)2 triplet	0.282905	-2375.636427	-2376.751935	-2376.583381	-2375.477317
trans-cis		-4.5	1.2	-3.4	-4.3
		70.4	75.4		
trans MoCl4(OEt2)2 triplet-singlet	-	-/0.1	-/5.4		
	1	-50.0	-36.0		
cis-WCl4(OEt2)2 singlet	0.282911	-2374.503687	-2375.620340		
trans-WCl4(OEt2)2 singlet	0.282730	-2374.513238	-2375.628490		
trans-cis		-25.6	-21.9		
cis-WCI4(OEt2)2 triplet	0.282496	-2374 532100	-2375 647992	-2375 480577	-2374 378452
trans-WCl4(OEt2)2 triplet	0.282801	-2374 533949	2375 650845	2375 485574	-2374 382820
trans-cis	01202001	-4.1	-6.7	-12.3	-10.7
cis-WCI4(OEt2)2 triplet-singlet		-75.7	-73.7		
trans-WCl4(OEt2)2 triplet-singlet		-54.2	-58.5		
	0.055744	0001 440100	0000 010104	0000 1000 45	0001 055 407
trops MoCl4(OH2)2 triplet	0.055744	-2061.440122	-2062.218194	2062 182345	-2061.355467
	0.055915	-2001.420000	-2002.202040	-2002.100078	-2001.342290
		00.0	42.5	07.5	00.0
cis-MoCl4(OMeH)2 triplet	0.113127	-2139.969970	-2140.834850	-2140.766433	-2139.866828
trans-MoCl4(OMeH)2 triplet	0.113094	-2139.958971	-2140.821034	-2140.756115	-2139.856581
trans-cis		28.8	36.2	27.0	26.8
cis-MoCl4(OMe2)2 triplet	0.168829	-2218 490765	-2219.444000	-2219.345869	-2218.372938
trans-MoCl4(OMe2)2 triplet	0.169374	-2218.493268	-2219.443174	-2219.343831	-2218.370612
trans-cis		-5.1	3.6	6.8	7.5
	0.055050	0000 005700	0001 110005	0001 070104	0000 055000
cis-wCi4(OH2)2 triplet	0.055653	-2060.335790	-2061.112305	2061.076134	-2060.255309
trans-cis	0.000900	-2000.324003	33 1	-2001.003430 34 1	-2000.244312
		00.0	00.1	0411	25.1
cis-WCl4(OMeH)2 triplet	0.112867	-2138.865911	-2139 729295	2139.661744	-2138 767539
trans-WCI4(OMeH)2 triplet	0.113305	-2138.856876	-2139.718928	-2139.653587	-2138.759484
trans-cis		24.9	28.4	22.6	22,3
cis-WCl4(OMe2)2 triplet	0.168913	-2217.387307	-2218.338798	-2218 241509	-2217 273527
trans-WCl4(OMe2)2 triplet	0.168371	-2217.391206	-2218.341125	-2218.243501	-2217.274676
trans-cis		-11.7	-7.5	-6.7	-4.4
	_				
aia MaCl4(dma) ainglat	0 1 4 0 2 7 4	0017 067750	0010 014065	0010 104500	0017 155175
cis-MoCl4(dme) singlet	0.149374	-2217 207752	-2218 245647	2218 124509	-2217 155175
cis-MoCl4(dme) triplet-singlet	0.143004	-80 4	-81.0	-74 6	-78.3
	+		0.10		. 0.0
cis-WCl4(dme) singlet	0.149314	-2216.164160	-2217 109986	-2217.023224	-2216.058726
cis-WCl4(dme) triplet	0.149121	-2216 193821	-2217 139654	-2217.048318	-2216.085523
cis-WCl4(dme) triplet-singlet		-78.4	-78.4	-66.4	-70.9

Table S14 (continued)

	UM06LGD3	UDLPNO-CCSD	UDLPNO-CCSD(T)	UDLPNO-CCSD	UDLPNO-CCSD(T)
	def2SVP	//UM06LGD3	//UM06LGD3	//UPBEPBEGD3	//UPBEPBEGD3
	ZPE	def2TZVP	def2TZVP	def2TZVP	def2TZVP
cis-MoCl4(OEt2)2 singlet	0.283088				
trans-MoCl4(OEt2)2 singlet	0.282835				
trans-cis					
	0.000007	0070 407004		0070 00000	
cis-MoCl4(OEt2)2 triplet	0.282907	-23/3.40/334		-2373.380993	
trans-MoCl4(OEt2)2 triplet	0.282905	-23/3.411236		-2373,385339	
trans-cis		-10.2		-11.4	
cis-WCI4(OEt2)2 singlet	0.282011				
trans-WCI4(OEt2)2 singlet	0.202311				
trans-cis	0.202700				
cis-WCl4(OEt2)2 triplet	0.282496	-2372.235362	-2372.375267	-2372.209300	-2372.356153
trans-WCl4(OEt2)2 triplet	0.282801	-2372.243178	-2372.381900	-2372.217104	-2372.362674
trans-cis		-19.7	-16.6	-19.7	-16.3
	0.055344	0050 044044	0050 700500	0050 000007	0050 700101
cis-MoCl4(OH2)2 triplet	0.055744	-2059.641611	-2059.726590	-2059.620087	-2059.709191
trans-MoCl4(OH2)2 triplet	0.055913	-2059.625615	-2059.710986	-2059.603365	-2059.692904
trans-cis		42.4	41.4	44.3	43.2
cis-MoCl4(OMeH)2 triplet	0.113127			-2138.042633	-2138.148556
trans-MoCl4(OMeH)2 triplet	0.113094			-2138.030995	2138 136830
trans-cis				30.5	30.7
aia MaCl4/OMa2\2 triplat	0 169920	2016 470694	2216 507744	2216 450122	2216 502015
trans MoCl4(OMe2)2 triplet	0.100029	2210.479004	-2210.397744	2210,459132	2210.000010
trans-MOCI4(OMez)z triplet	0.109374	-2210.464570	-2210.002134	-2210,400840	-2210.003910
		-11,4	-10,1	-0,1	-0.9
cis-WCI4(OH2)2 triplet	0.055653	-2058 466505	-2058 542497	-2058 444322	-2058 524486
trans-WCl4(OH2)2 triplet	0.055950	2058 455058	-2058 531321	2058 433621	-2058 513963
trans-cis	0.000000	30.8	30.1	28.9	28.4
cis-WCl4(OMeH)2 triplet	0.112867			-2136.868855	-2136.965294
trans-WCI4(OMeH)2 triplet	0.113305			-2136.861332	-2136.957732
trans-cis				20.9	21.0
cis-WCl4(OMe2)2 triplet	0.168913	-2215.306710	-2215,415517	-2215,284855	-2215.399674
trans-WCl4(OMe2)2 triplet	0.168371	-2215.315144	-2215 423420	-2215.291670	-2215 405340
trans-cis		-23.6	-22.2	-19.3	-16.3
		UPBEPBEGD3			
		def2TZVP	UPBEPBEGD3		
	1	ZPE	def2TZVP		
cis-MoCl4(OH2)2 triplet flat H	20	0.052009	-2061.347649		
trans-MoCl4(OH2)2 triplet flat	: H2O	0.052412	-2061 336255		
trans-cis		1.1	31.0		
cis-WCl4(OH2)2 triplet flat H2	20	0.051850	-2060 247263		
trans-WCl4(OH2)2 triplet flat	H2O	0.051409	-2060 234592		
trans-cis		-1.2	32.1		

Table S15. Experimental and calculated bond distances (pm) for $MCl_4(dme)$ and *cis*- and *trans*- $MCl_4(ORR')_2$ (M = Mo, W; R, R' = H, Me, Et) using various DFT models and the def2-TZVP basis set. The ether ligands are considered to be in the equatorial plane, so Cl_{eq} atoms are *trans* to ether O atoms, while Cl_{ax} atoms are *cis* to ether O atoms. Values are averaged for bonds of the same type.

		Expt	UM06L+GD3	UBLYP+GD3	UPBEPBE+GD3
MoCl ₄ (dme)	Mo-Cl _{eq}	230.6	228.5	231.2	228.5
	Mo-Clax	233.2	233.4	236.1	233.4
	Mo-O	215.9	232.4	236.0	232.6
WCl ₄ (dme)	W-Cl _{eq}	231.9	230.3	233.1	230.5
	W-Clax	233.9	234.8	237.7	234.9
	W–O	214.7	231.1	233.0	230.3
cis-MoCl ₄ (OEt ₂) ₂	Mo-Cl _{eq}		229.2	231.8	229.1
	Mo-Clax		233.7	236.4	233.7
	Mo–O		233.3	237.4	233.9
trans-MoCl ₄ (OEt ₂) ₂	Mo-Cl	235.5	237.7	240.5	237.5
	Mo–O	206.7	210.0	212.7	210.3
cis-WCl ₄ (OEt ₂) ₂	W-Cl _{eq}		231.0	233.8	231.1
	W-Clax		235.7	238.6	235.9
	W–O		230.6	232.8	229.9
trans–WCl ₄ (OEt ₂) ₂	W–Cl	235.7	236.8	239.5	236.8
	W–O	207.0	218.3	220.5	218.0
cis-MoCl ₄ (OH ₂) ₂	Mo-Cl _{eq}				229.1
	Mo-Cl _{ax}				232.1
	Mo-O				231.2
trans-MoCl ₄ (OH ₂) ₂	MoCl				234.6
	Mo-O				219.2
cis–WCl ₄ (OH ₂) ₂	W-Cl _{eq}				230.9
	W-Clax				233.6
	W-O				231.5
trans–WCl ₄ (OH ₂) ₂	W-Cl				235.8
	W–O				219.7
cis-MoCl ₄ (OMeH) ₂	Mo-Cl _{eq}				229.0
	Mo-Cl _{ax}				233.2
	Mo-O				230.2
<i>trans</i> –MoCl ₄ (OMeH) ₂	Mo-Cl				235.0
	Mo-O				217.4
<i>cis</i> –WCl ₄ (OMeH) ₂	W-Cl _{eq}				230.8
	W-Cl _{ax}				234.6
	W-O				229.6
trans–WCl ₄ (OMeH) ₂	W-Cl				236.3
	W-O				217.8
	Mo-Cleq				228.5
	Mo-Clax				232.2
	Mo-O				239.5
trans-MoCl ₄ (OMe ₂) ₂	Mo-Cl				235.3
ain WCL (OM-)	WI0-U				218.5
$cis - w Cl_4(ONIe_2)_2$	W-Cleq				230.4
	W-Cl _{ax}				234.0
tuans WCL (OMa)	W-0				230.9
<i>trans</i> -wCl ₄ (ONle ₂) ₂	W-CI				230.3
	w-U	1	1	1	∠1ð./

Table S16. Calculated (TD, nm) electronic transition energies for $MCl_4(dme)$ and *trans*- $MCl_4(OEt_2)_2$ (M = Mo, W) using various model chemistries. Band positions are generally approximated within 10 nm, owing to a choice of a peak width at half height = 30 nm.

	Exp	UCAM- B3LVP	U ω B 97XD	UM06LHF	ULC-BLYP	ULC-M06L
		DJLTT				
MoCl ₄ (dme)	410 (sh)	490	510	460	480	430
, , ,	360 (sh)	390 (sh)	400 (sh)	325	390	370
	310	360	360		310 (sh)	310 (sh)
MoCl ₄ (dme)					460	410
toluene					380 (sh)	365 (sh)
					320	320 (sh)
WCl ₄ (dme)	400 (sh) ?	450	460	600	440	405
	320 (sh)	380	390	420	370	355
WCl ₄ (dme)					425	390
toluene					360	350
trans-MoCl ₄ (OEt ₂) ₂	550 (sh) ?	440 (sh)	450 (sh)	380	360 (sh)	350 (sh)
`, , , , , , , , , , , , , , , , ,	365	400	410	320	310 (sh)	, ,
		325	330			
trans-MoCl ₄ (OEt ₂) ₂					360 (sh)	340 (sh)
toluene					310 (sh)	305 (sh)
						, ,
trans-WCl ₄ (OEt ₂) ₂	660					
	480 (sh)					
	380 (sh)	340	340	310	< 300	<300
trans-WCl ₄ (OEt ₂) ₂					< 300	< 300
toluene						

Table S17. Calculated (TD–ULC-M06L/def2TZVP, SCRF=toluene, nm) electronic transition wavelengths for $MCl_4(dme)$ and *trans*- $MCl_4(OEt_2)_2$ (M = Mo, W).

trans-MoCl ₄ (OEt ₂) ₂ C _{2h}			trans-WCI4(OEt2)2 C2h			
Svm	λ	Intensity	Svm	λ	Intensity	
BG	7311.97	0.00000	-,			
AG	1797.09	0.00000	BG	2974.58	0.00000	
AG	375.27	0.00000	BG	393.78	0.00000	
AG	367.65	0.00000	BG	361.36	0.00000	
BG	366.30	0.00000	BG	327.65	0.00000	
BG	363.55	0.00000	AG	317.79	0.00000	
AU	341.43	0.00460	BG	306.85	0.00000	
AU	337.37	0.00180	BU	290.03	0.02410	
BG	313.72	0.00000	BU	288.99	0.02770	
BG	309.76	0.00000	AU	256.08	0.00000	
BU	305.05	0.00930	AG	254.31	0.00000	
AG	304.48	0.00000	BG	247.61	0.00000	
BG	294 51	0.00000	BU	240.46	0.02010	
AU	291.07	0.00020	AU	239.61	0.00000	
AU	284.91	0.00200	BU	238 55	0.03940	
RU	284 49	0.00190	BG	238.24	0.00000	
	278.28	0.01330	BU	234.99	0.03150	
	274.90	0.00000		232 50	0.00100	
	272.90	0.00000	BU	202.00	0.00000	
	271.37	0.00000	BG	229.07	0.00000	
	270.96	0.00000	BG	225.41	0.00000	
	266 58	0.02720		223.54	0.00000	
RU	264.01	0.00000		222.00	0.00000	
BU	256.41	0.02100	BG	216.61	0.000440	
	250.41	0.00700		210.01	0.00000	
во	252.22	0.07580	AU	215.70	0.00010	
MoCL(d	me) C ₂		WCL₄(dn	WCL (dme) Co		
Svm	λ	Intensity	Svm	λ	Intensity	
в.	2995.65	0.00060	B	4665.44	0.00040	
B	2252.77	0.00020	B	2465.61	0.00010	
Ā	434.34	0.00000	A	408.85	0.00000	
B	428.99	0.00030	B	393.91	0.00130	
B	411 13	0.00240	B	385.20	0.00240	
A	365.57	0.00290	A	344.52	0.00340	
A	327 22	0.00510	A	268.81	0.00550	
B	318.60	0.00280	B	264.89	0.00260	
B	302.97	0.02410	A	254.52	0.00010	
A	301.63	0.00000	B	249.82	0.02490	
Δ	289.52	0.00000	Δ	240.24	0.00170	
A	282.40	0.00000	A	238.65	0.00030	
R	277 50	0.00870	Δ	238.02	0.00030	
Δ	277.42	0.00030	B	237.23	0.00550	
Δ	271.72	0.02280	Δ	230 19	0.03070	
Δ	254 39	0.00000	B	224.02	0.05640	
R	254.00	0.03870	Δ	223.57	0.0000	
Δ	250 84	0.00010	B	216.02	0.00000	
B	247 99	0.02930		216.30	0.000200	
B	246.52	0.02330	B	210.00	0.00020	
Δ	240.02	0.00120		210.58	0.00740	
B	2/2/7	0.03060	B	210.00	0.06020	
Δ	2/0 30	0.00000	B	20.47	0.00320	
B	230.67	0.00020		200.27	0.00030	
B	237.06	0.00200	B	207.00	0.01330	
			· • •			

Table S18. Optimized Cartesian coordinates (UM06L+GD3/def2-TZVP) for all triplet MCl_4L_2 complex molecules examined (M = Mo, W).

MoCl ₄	(dme)			1	WCl ₄ ((dme)		
Mo	0.061797	-0.000277	0.000035	,	Ŵ	0.050215	-0.000226	0.000030
Cl	-0.431910	-0.789709	2.140184	(Cl	-0.438216	-0.790246	2.156657
Cl	1.591360	1.587289	0.602646	(Cl	1.609406	1.586766	0.596664
Cl	1.577774	-1.601476	-0.600832	(Cl	1.595792	-1.601163	-0.594766
Cl	-0.422372	0.793533	-2.140673	(Cl	-0.428546	0.794139	-2.157170
0	-1.792102	1.316101	0.482544	(0	-1.791981	1.312649	0.474083
С	-1.715276	2.732059	0.296727	(С	-1.711724	2.732101	0.296000
Н	-0.818157	3.068799	0.806657]	H	-0.808097	3.060767	0.799797
Н	-2.597444	3.200086	0.735880]	H	-2.588430	3.198663	0.746556
Н	-1.647581	2.971757	-0.766526]	H	-1.652138	2.975157	-0.766671
С	-2.963659	0.754058	-0.118079	(С	-2.972087	0.754336	-0.118486
Н	-2.966479	0.986970	-1.187649]	H	-2.979801	0.988289	-1.187629
Н	-3.847878	1.201474	0.344555]	H	-3.850227	1.204413	0.352053
С	-2.970425	-0.727493	0.114683	(С	-2.978882	-0.727605	0.114964
0	-1.803259	-1.300006	-0.484602	(0	-1.803138	-1.296501	-0.476211
С	-1.739327	-2.716594	-0.298704	(С	-1.735847	-2.716616	-0.298041
Н	-0.844675	-3.061355	-0.807609]	H	-0.834613	-3.053388	-0.800770
Н	-2.625146	-3.176706	-0.738870]	H	-2.616174	-3.175285	-0.749637
Н	-1.674997	-2.956883	0.764625]	Н	-1.679705	-2.960191	0.764699
Н	-2.976555	-0.960366	1.184247]	Η	-2.989963	-0.961474	1.184095
Н	-3.858083	-1.166978	-0.348966]	H	-3.860472	-1.169778	-0.356618
cis-Mo	CL(OEta)a				cis-W	CL(OEt_)		
Mo	0.000855	-0.024742	0.043954		W	0.046336	-0.661191	-0.106524
0	1.300491	1.946623	0.024944	(0	1.909015	0.546950	0.621993
Č	1.956523	2.366967	1.248771	(Ĉ	2.602555	0.140159	1.831971
Č	1.310129	3.612186	1.787338	(Ĉ	2.334338	1.121941	2.936941
H	1.811518	3.933436	2.699388	1	H	2.858467	0.822864	3.843626
Н	1.363495	4.433423	1.072240]	H	2.671631	2.124501	2.672663
Н	0.263855	3.425052	2.023671]	H	1.268761	1.160011	3.158869
Н	3.015838	2.516022	1.029638]	H	3.666098	0.062103	1.597926
Н	1.884521	1.535157	1.944768]	Н	2.248521	-0.858590	2.074866
С	1.947477	2.511087	-1.138727	(С	2.760424	1.346221	-0.235777
С	3.171759	1.739036	-1.546267	(С	3.674859	0.502052	-1.078216
Н	2.911269	0.716159	-1.809802]	Н	3.100690	-0.139138	-1.743804
Н	3.632371	2.210855	-2.413438]	Н	4.311771	1.144396	-1.685226
Н	3.915611	1.706777	-0.751174]	Н	4.321099	-0.129374	-0.469697
Н	2.179427	3.554082	-0.904159]	Н	3.311802	2.033321	0.412096
Н	1.203206	2.510327	-1.932221]	H	2.094078	1.939300	-0.858442
0	-1.922934	1.165321	-0.393355	(0	-1.299269	1.117534	0.337762
С	-1.877659	2.412693	-1.102471	(С	-0.845448	2.475863	0.189773
С	-2.810065	2.443777	-2.282920	(С	-1.684512	3.264679	-0.777316
Н	-2.614736	1.603656	-2.947212]	H	-1.744440	2.752937	-1.736380
Н	-3.856989	2.412754	-1.983671]	Н	-2.695066	3.432544	-0.407406
Н	-2.659798	3.364939	-2.843776]	Н	-1.231470	4.241481	-0.939101
Н	-2.076074	3.226225	-0.398212]	Н	-0.807333	2.938707	1.179714
Н	-0.842778	2.511223	-1.422878]	H	0.178284	2.386635	-0.165725
С	-3.193090	0.833140	0.211019	(С	-2.634138	0.959323	0.881208
С	-3.745396	1.921537	1.091183	(С	-2.811662	1.641267	2.209452
Н	-4.618744	1.539501	1.617279]	Н	-3.775130	1.354557	2.627495
Н	-3.013555	2.228851	1.836682]	Н	-2.037444	1.330768	2.909855
Н	-4.065884	2.799104	0.530582	1	H	-2.803599	2.728119	2.134135
Н	-2.991373	-0.068918	0.783022	1	H	-2.763121	-0.116020	0.968423
Н	-3.887120	0.563975	-0.589884	1	H	-3.345497	1.315820	0.132450
C1	-1.245803	-1.951857	0.050798	(C1	-1.809428	-1.838396	-0.852936

Table S18. (continued)

C1	0 171163	0 124824	-2 277632	Cl	0 323489	0.480025	-2 145298
Cl	1 966542	-1.001130	0.527104		1 512471	-2 402792	-0.430396
	0.568414	0.682423	0.527194 2 201181		0.364600	1 011600	2 100071
CI	-0.308414	0.082425	2.201181	CI	-0.304000	-1.011009	2.1909/1
trans	MoCL (OFt.)			tra	ns WCl (OFt)		
M-	$-MIOCI_4(OEI_2)_2$	0.000000	0.00000	ira W	$n_{3-w} Cl_{4} (OEl_{2})_{2}$	0.000000	0.00000
MO Cl	0.000000	0.000000	-0.000000	W	0.000000	0.000000	-0.000000
CI	-0./884/0	1.528/95	1.653465	CI	0.852/08	1.52/254	-1.602440
CI	-2.004446	0.264926	-1.231559	CI	-1.985693	-0.227891	-1.261898
0	-0.862822	-1.593158	1.061590	0	0.892513	-1.657770	-1.105054
С	-0.230995	-2.906240	1.154668	С	0.274472	-2.968635	-1.180724
Н	-0.234905	-3.186121	2.209203	Н	0.310839	-3.287445	-2.224475
Н	0.800064	-2.737812	0.853668	Н	-0.769673	-2.804707	-0.922117
С	-0.923378	-3.908969	0.277562	С	0.937781	-3.948995	-0.255293
Н	-0.950089	-3.560404	-0.752985	Н	1.975249	-4.137740	-0.527351
Н	-1.939219	-4.121249	0.606887	Н	0.410618	-4.901016	-0.298815
Н	-0.368953	-4.845740	0.304386	Н	0.904924	-3.588663	0.770940
C	-2.138637	-1.469169	1.760858	C	2.149189	-1.533118	-1.820103
н	-2 748642	-2 322850	1 461664	н	2 754922	-2 406956	-1 571360
н	-2 591497	-0 569979	1 350457	Н	2.731722	-0.660877	-1 388009
C	1.040821	1 270624	2 246462		1.022205	1 282702	2 200404
U U	-1.940821	-1.3/9034	2 670222		2 802250	-1.303/93	2 701064
п	-1.55/150	-2.29/094	3.070555	П	2.895559	-1.255655	-3./91904
п	-2.903229	-1.190183	3.721010	П	1.300094	-0.519257	-3.509228
H	-1.2//6/9	-0.553060	3.493965	H	1.4/2425	-2.266032	-3./41345
CI	0.788470	-1.528795	-1.653465	Cl	-0.852/08	-1.527254	1.602440
Cl	2.004446	-0.264926	1.231559	Cl	1.985693	0.227891	1.261898
0	0.862822	1.593158	-1.061590	0	-0.892513	1.657770	1.105054
С	0.230995	2.906240	-1.154668	С	-0.274472	2.968635	1.180724
Н	0.234905	3.186121	-2.209203	Н	-0.310839	3.287445	2.224475
Н	-0.800064	2.737812	-0.853668	Н	0.769673	2.804707	0.922117
С	0.923378	3.908969	-0.277562	С	-0.937781	3.948995	0.255293
Н	0.950089	3.560404	0.752985	Н	-1.975249	4.137740	0.527351
Н	1.939219	4.121249	-0.606887	Н	-0.410618	4.901016	0.298815
Н	0.368953	4.845740	-0.304386	Н	-0.904924	3.588663	-0.770940
С	2.138637	1.469169	-1.760858	С	-2.149189	1.533118	1.820103
Н	2 748642	2 322850	-1 461664	Н	-2 754922	2 406956	1 571360
Н	2 591497	0 569979	-1 350457	Н	-2 635479	0.660877	1 388009
C	1 940821	1 379634	-3 246463	C II	-1 933295	1 383793	3 299494
ч	1.540021	2 207604	2 670222	с ц	2 803350	1.365795	3 701064
и Ц	2 003220	1 106183	3 721610	и П	1 306604	0.510237	3 500228
11	1.277670	0.552060	-3.721010	11	1 472425	0.519257	2 741245
п	1.277079	0.555000	-3.493903	п	-1.4/2423	2.200032	5./41545
• • •							
CIS-IVI	$O(1_4(OH_2)_2)$	0.000007	0.010074	cis	$-wCl_4(OH_2)_2$	0 000001	0.001470
Mo	0.000009	0.000006	0.012964	W	-0.000001	-0.000001	-0.001469
Cl	0.261666	-1.677108	1.551462	Cl	0.170387	-1.702900	1.546492
Cl	2.194401	0.340608	-0.662591	Cl	2.220150	0.241963	-0.681629
Cl	-0.259425	1.678464	1.550371	Cl	-0.168035	1.704247	1.545264
Cl	-2.195356	-0.341186	-0.659121	Cl	-2.221184	-0.242556	-0.678039
0	-0.259717	1.663800	-1.569404	0	-0.213938	1.693690	-1.561886
Н	-1.112612	2.097871	-1.437600	Н	-1.137589	1.981657	-1.551604
Н	0.420869	2.336729	-1.438325	Н	0.318798	2.456174	-1.300454
0	0.257450	-1.665172	-1.568322	0	0.211562	-1.695051	-1.560732
Н	1.110534	-2.099129	-1.437371	Н	1.135228	-1.983010	-1.551605
Н	-0.422945	-2.337986	-1.435671	Н	-0.320775	-2.457307	-1.297825
trans-	-MoCl₄(OH ₂),			tra	ns-WCl4(OH2)2		
Мо	-0.000000	0.000000	0.000000	W	0.000000	0.000000	-0.000000

Table S18. (continued)

Cl	1.669063	1.643038	0.086306	Cl	-1.736283	1.276872	-0.950492
Cl	1.607871	-1.673618	0.350330	Cl	1.519116	1.770520	-0.358538
0	0.447792	-0.005151	-2.145618	0	-0.564484	0.545988	2.055443
Н	0.584053	-0.902886	-2.476384	Н	0.040592	0.052745	2.634187
Н	1.284201	0.472500	-2.257257	Н	-1.456249	0.229295	2.258144
Cl	-1 616445	-1 665598	-0 349091	Cl	1 688425	-1 224333	1 105094
Cl	-1 660603	1.651523	-0.087529	Cl	-1 476664	-1 823980	0.202677
0	-0.447808	-0.001258	2 145620	0	0 577212	-0 543821	-2 052481
н	-0.588677	-0.898036	2.145020	н	-0.190069	-0.545621	-2.602401
и П	-0.388077	-0.898030	2.477032	II H	-0.190009	0 155611	2 3 4 0 3 0 5
11	-1.201/33	0.480705	2.230903	11	1.185000	0.155011	-2.349393
cis-M	loCl ₄ (OMeH) ₂	0.000.046		cis-	VCl ₄ (OMeH) ₂	0.0 .0 0.1.6	
Mo	-0.070356	-0.039546	0.104333	W	-0.057229	-0.042046	0.032738
CI	-0.475217	1.55/14/	1.695598	Cl	-0.558850	1.532830	1.642812
Cl	-2.219360	-0.398861	-0.724718	Cl	-2.192675	-0.560587	-0.784447
Cl	0.117575	-1.760075	1.605069	Cl	0.257357	-1.754857	1.547006
Cl	2.171164	0.370503	-0.388582	Cl	2.157587	0.534119	-0.475152
0	0.258165	-1.612009	-1.544486	0	0.366976	-1.593675	-1.608842
С	1.196943	-2.690949	-1.451080	С	1.383575	-2.603353	-1.520133
Н	2.161964	-2.245426	-1.231834	Η	2.314437	-2.088231	-1.305880
Н	0.926470	-3.377031	-0.648975	Н	1.165972	-3.306136	-0.716764
Н	1.243711	-3.215376	-2.404457	Н	1.462457	-3.121076	-2.474655
Н	-0.627687	-1.958001	-1.723477	Н	-0.491920	-2.000725	-1.792795
0	-0.176761	1.658070	-1.444964	0	-0.290987	1.649869	-1.506315
Ċ	-1.121444	2.734708	-1.390956	Č	-1.323427	2.6462.02	-1.459863
н	-1 054153	3 323355	-2 304803	Ĥ	-1 275933	3 257290	-2 359662
н	-2 105310	2 281975	-1 319991	Н	-2 268020	2 112710	-1 429892
н	-0.950048	3 362416	-0 516999	Н	-1 228321	3 264636	-0 568141
н	0 72/3/7	2 000000	-1 /70075	и Н	0 579003	2 073030	-0.500141
11	0.724347	2.009099	-1.4/99/3	11	0.579005	2.075050	-1.541015
				1			
trans	-MoCl ₄ (OMeH) ₂	0.01(205	0.515005	tran	$s-WCI_4(OMeH)_2$	0.010104	0 000000
Mo	-0.015286	-0.016395	0.517325	W	0.000142	0.013184	0.000098
CI	0.184664	1.534556	2.238299	Cl	-1.033360	-1.591384	1.352704
Cl	0.632808	1.648081	-1.051575	Cl	-0.801939	1.738352	1.437256
0	-2.141491	0.431499	0.338996	0	-1.745501	0.077742	-1.315317
Н	-2.437750	-0.105586	-0.412500	Н	-1.545432	0.758317	-1.977080
С	-2.626772	1.781801	0.204098	С	-3.080718	0.263625	-0.800218
Н	-2.253480	2.236373	-0.712536	Н	-3.175644	1.236365	-0.319790
Н	-3.714680	1.767618	0.217535	Н	-3.790226	0.160541	-1.618279
Н	-2.250321	2.328986	1.062069	Н	-3.236769	-0.522383	-0.068702
Cl	-0.456061	-1.452056	-1.323433	Cl	0.803115	1.712232	-1.467314
Cl	-0.407584	-1.774783	1.986708	Cl	1.032462	-1.615834	-1.323804
0	2.120067	-0.454615	0.533329	0	1.745649	0.100484	1.314342
н	2.495617	0.170550	-0.106376	Н	1.546326	0.793960	1.962825
C	2 629797	-1 780008	0.287858	C	3 081353	0 274271	0 796331
н	3 709734	-1 771642	0.420406	н	3 790235	0.187869	1 616860
н	2 168732	-2 /26013	1 026800	и Н	3 237216	-0 527145	0.081698
н	2.100752	-2.117466	-0.712455	H	3.237210	1 236575	0.001020
11	2.302007	-2.11/400	-0./12+33	11	5.177475	1.230375	0.295540
cis-M	$10Cl_4(OMe_2)_2$	0.265025	0.405000	cis-	$vCl_4(OMe_2)_2$	0.010707	0.000.522
Mo	0.203466	0.365025	-0.405228	W	0.000075	0.013/2/	0.000533
Cl	1.914057	1.800644	0.081403	Cl	-1.712249	-1.435269	0.506919
CI	1.089069	-0.765825	-2.232654	Cl	0.093202	-0.216326	-2.326943
Cl	-1.024360	1.937098	-1.526862	Cl	1.663995	-1.490866	0.546495
Cl	-0.942265	0.481484	1.610843	Cl	0.071466	1.195714	2.018344
0	-1.504960	-1.193147	-0.900464	0	1.684666	1.532207	-0.568059

Table S18. (continued)

С	-2.218515	-1.945595	0.070491	С	1.767151	2.860161	-0.066375
Н	-1.533686	-2.188034	0.876645	Н	0.755755	3.217262	0.099782
Н	-3.059143	-1.376365	0.473348	Н	2.318633	2.890944	0.875485
Н	-2.582128	-2.867974	-0.386736	Н	2.259548	3.492684	-0.807047
С	-2.261112	-1.023081	-2.098948	С	2.948500	1.052741	-1.032940
Н	-1.611406	-0.560302	-2.834100	Н	2.775678	0.102956	-1.527549
Н	-2.588957	-2.000384	-2.458063	Н	3.363357	1.771327	-1.741544
Н	-3.127421	-0.383343	-1.917857	Н	3.634375	0.913349	-0.195209
0	1.517069	-1.279423	0.728149	0	-1.734388	1.532920	-0.583322
С	2.922247	-1.263678	0.452098	С	-2.814594	1.000547	-1.363429
Н	3.430114	-0.561192	1.115587	Н	-3.560163	0.543425	-0.710694
Н	3.323826	-2.268181	0.597170	Н	-3.267129	1.810721	-1.937305
Н	3.056831	-0.956376	-0.578464	Н	-2.404986	0.254153	-2.033938
С	1.294685	-1.682881	2.077359	С	-2.233517	2.528666	0.311175
Н	1.848120	-2.604078	2.268830	Н	-2.836218	3.241213	-0.254232
Н	1.620977	-0.906184	2.773058	Н	-2.840863	2.071331	1.095584
Н	0.233492	-1.856799	2.214393	Н	-1.390822	3.035473	0.766984
trans-	MoCl ₄ (OMe ₂) ₂			trans-	WCl ₄ (OMe ₂) ₂		
Mo	0.006581	-0.000034	0.015009	W	0.000384	0.000070	-0.000721
Cl	-0.162818	-1.664271	1.671734	Cl	1.633640	0.352714	-1.673247
Cl	-0.162639	1.665305	1.670679	Cl	1.633395	0.352791	1.672028
0	2.164880	-0.000274	0.323133	0	-0.368034	2.162214	-0.000799
С	2.922999	1.193683	0.090419	С	-0.828154	2.811235	1.193137
Н	2.310969	2.030629	0.410899	Н	-0.336530	2.327657	2.031237
Н	3.836329	1.144300	0.683755	Н	-0.546218	3.863065	1.144982
Н	3.161837	1.289676	-0.969658	Н	-1.910328	2.709734	1.285559
С	2.922996	-1.194036	0.089466	С	-0.828281	2.811136	-1.194739
Н	2.310914	-2.031200	0.409300	Н	-0.336747	2.327487	-2.032850
Н	3.161728	-1.289191	-0.970714	Н	-1.910466	2.709626	-1.287035
Н	3.836377	-1.145092	0.682758	Н	-0.546340	3.862969	-1.146703
Cl	0.175873	1.663993	-1.641958	Cl	-1.632842	-0.353397	1.671977
Cl	0.175973	-1.665204	-1.640878	Cl	-1.632598	-0.353466	-1.673642
0	-2.151675	0.000159	-0.293062	0	0.367672	-2.162168	-0.000634
С	-2.909773	-1.193768	-0.059800	С	0.827900	-2.811096	-1.194582
Н	-3.148140	-1.289533	1.000398	Н	1.910055	-2.709343	-1.287084
Н	-3.823326	-1.144415	-0.652780	Н	0.546278	-3.862985	-1.146426
Н	-2.297873	-2.030773	-0.380372	Н	0.336115	-2.327677	-2.032683
С	-2.909824	1.193994	-0.059613	С	0.828059	-2.810983	1.193314
Н	-3.148340	1.289465	1.000580	Н	1.910223	-2.709198	1.285673
TT							
Н	-2.297832	2.031065	-0.379850	Н	0.336365	-2.327504	2.031433

Nuclear Magnetic Resonance

Figure S1. ¹H NMR Spectrum of *trans*-MoCl₄(Et₂O)₂ in d₈-toluene.

X-ray Diffraction

Figure S2. Thermal ellipsoid plot (30%) and labelling scheme of 4.

Magnetic Susceptibility

Figure S3. Gouy Susceptibility Calculations

*MoCl*₄(*dme*)

First, the mass susceptibility was determined with the following equation:

$$\chi_g = \frac{\left(R - R_0\right) x C x L}{m x \, 10^9}$$

Where R is the reading of the sample and the tube, R_0 is the reading of the empty tube, C is the calibration standard of the balance, L is the length of the sample in the tube, and m is the mass of the sample in the tube.

$$\chi_g = \frac{(346 - (-36)) x \, 1 \, x \, 1.9 \, cm}{0.122 \, g \, x \, 10^9} = 5.95 \, x \, 10^{-6} \frac{erg}{G^2 \, x \, g}$$

From there, the molar susceptibility is determined by multiplying the mass susceptibility by the molar mass of the complex.

$$\left(5.95 \times 10^{-6} \frac{erg}{G^2 \times g}\right) \times 327.88 \frac{g}{mol} = 1.95 \times 10^{-3} \frac{erg}{G^2 \times mol}$$

The diamagnetic correction values and Pascal's constants for covalent species are then applied⁴.

$$\chi_A = 1.95 \times 10^{-3} \frac{erg}{G^2 \times mol} + 1.731 \times 10^{-4} \frac{erg}{G^2 \times mol} = 2.12 \times 10^{-3} \frac{erg}{G^2 \times mol}$$

Finally, μ_{eff} is determined.

$$\mu_{eff} = 2.828 (\chi_A T)^{\frac{1}{2}} = 2.828 ((2.12 \ x \ 10^{-3} \frac{erg}{G^2 \ x \ mol}) (298.15K)^{\frac{1}{2}} = 2.25 \ B.M.$$

WCl₄(dme)

First, the mass susceptibility was determined with the following equation:

$$\chi_g = \frac{\left(R - R_0\right) x C x L}{m x \, 10^9}$$

Where R is the reading of the sample and the tube, R_0 is the reading of the empty tube, C is the calibration standard of the balance, L is the length of the sample in the tube, and m is the mass of the sample in the tube.

$$\chi_g = \frac{(135 - (-36)) x \, 1 \, x \, 2.03 \, cm}{0.181 \, g \, x \, 10^9} = 1.92 \, x \, 10^{-6} \frac{erg}{G^2 \, x \, g}$$

From there, the molar susceptibility is determined by multiplying the mass susceptibility by the molar mass of the complex.

$$\left(1.92 \ x \ 10^{-6} \ \frac{erg}{G^2 \ x \ g}\right) x \ 415.78 \ \frac{g}{mol} = \ 7.97 \ x \ 10^{-4} \ \frac{erg}{G^2 \ x \ mol}$$

The diamagnetic correction values and Pascal's constants for covalent species are then applied⁴.

$$\chi_A = 7.97 \times 10^{-4} \frac{erg}{G^2 \times mol} + 1.791 \times 10^{-4} \frac{erg}{G^2 \times mol} = 9.77 \times 10^{-4} \frac{erg}{G^2 \times mol}$$

Finally, μ_{eff} is determined.

$$\mu_{eff} = 2.828 (\chi_A T)^{\frac{1}{2}} = 2.828 ((9.77 \ x \ 10^{-4} \ \frac{erg}{G^2 \ x \ mol}) (298.15K)^{\frac{1}{2}} = 1.53 \ B.M.$$

Figure S3. SQUID Data Calculations

MoCl₄(dme)

Using the Curie Weiss calculations, the linear fit can be used to calculate the molar susceptibility at any

given temperature. Slope = 1.8317, intercept = 146.885

$$y = (1.8317)x + 146.885$$

In this equation, y is the inverse molar susceptibility and x is the temperature. We are extracting the molar susceptibility at 298 K to compare to the benchtop Gouy measurements.

$$\frac{1}{\chi_{mol}} = (1.8317)(298) + 146.885$$

 $\chi_{mol} = 1.44 \ x \ 10^{-3}$

The diamagnetic correction values and Pascal's constants for covalent species are then applied⁴.

$$\chi_A = 1.44 \times 10^{-3} \frac{erg}{G^2 \times mol} + 1.731 \times 10^{-4} \frac{erg}{G^2 \times mol} = 1.62 \times 10^{-3} \frac{erg}{G^2 \times mol}$$

Finally, μ_{eff} is determined.

$$\mu_{eff, 298K} = 2.828 (\chi_A T)^{\frac{1}{2}} = 2.828 ((1.62 \ x \ 10^{-3} \frac{erg}{G^2 \ x \ mol}) (298K)^{\frac{1}{2}} = 1.97 \ B.M.$$

 $WCl_4(dme)$

Using the Curie Weiss calculations, the linear fit can be used to calculate the molar susceptibility at any given temperature. Slope = 4.9084, intercept = 402.3757

y = (4.9084)x + 402.3757

In this equation, y is the inverse molar susceptibility and x is the temperature. We are extracting the molar susceptibility at 298 K to compare to the benchtop Gouy measurements.

$$\frac{1}{\chi_{mol}} = (4.9084)(298) + 402.3757$$

 $\chi_{mol} = 5.36 \ x \ 10^{-4}$

The diamagnetic correction values and Pascal's constants for covalent species are then applied⁴.

$$\chi_A = 5.36 \times 10^{-4} \frac{erg}{G^2 \times mol} + 1.791 \times 10^{-4} \frac{erg}{G^2 \times mol} = 7.15 \times 10^{-4} \frac{erg}{G^2 \times mol}$$

Finally, μ_{eff} is determined.

$$\mu_{eff, 298K} = 2.828 (\chi_A T)^{\frac{1}{2}} = 2.828 (\left(7.15 \ x \ 10^{-4} \ \frac{erg}{G^2 \ x \ mol}\right) (298K))^{\frac{1}{2}} = 1.31 \ B.M.$$

Figure S4. Calculated frontier α molecular orbitals for triplet *trans*-MoCl₄(OEt₂)₂ (C_{2h} symmetry, UBLYP+GD3/def2-TZVP, isovalue = 0.04)

References

- 1. Persson, C; Andersson, C., Inorg. Chim. Acta, 1993, 203, 235-238.
- 2. Shaw, T. E.; LeMagueres, P.; Sattelberger, A. P.; Jurca, T., Acta Cryst., 2020, C76, 947-951.
- 3. Shaw, T. E., Sattelberger, A. P., Jurca, T., Acta Cryst., 2021, C77, 181-185.
- 4. Dolomanov, O. V.; Bourhis, L.J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., *J. Appl. Cryst.*, **2009**, *42*, 339-341.
- 5. Sheldrick, G. M., Acta Cryst., 2015, A71, 3-8.
- 6. Sheldrick, G. M., Acta Cryst., 2008, A64, 112-122.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., *Gaussian 09*, Rev. A. 02, Gaussian, Inc., Wallingford CT, 2009.
- 8. Zhao, Y.; Truhlar, D. G., Theor. Chem. Acc., 2008, 120, 215–241.
- 9. Weigend, F.; Ahlrichs, R., Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 10. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., J. Chem. Phys., 2010, 132, 154104.
- 11. Check, C. E.; Gilbert, T. M., J. Org. Chem., 2005, 70, 9828-9834.
- 12. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., J. Chem. Phys., 2005, 123, 161103-1-161103-4.
- 13. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R., *J Cheminform*, **2012**, *4*, 17.
- 14. Riplinger, C.; Neese, F., J. Chem. Phys. 2013, 138, 034106.
- 15. Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F., J. Chem. Phys. 2013, 139, 134101.
- 16. Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F., J. Chem. Phys. 2016, 144, 024109.
- 17. Neese, F., WIREs Comput. Mol. Sci. 2012, 2, 73-78.
- 18. Neese, F., WIREs Comput. Mol. Sci. 2018, 8, e1327.
- 19. Weigend, F., Phys. Chem. Chem. Phys. 2006, 8, 1057.
- 20. Hellweg, A.; Hattig, C.; Hofener, S.; Klopper, W., Theor. Chem. Acc. 2007, 117, 587.
- 21. Kaleidagraph for Macintosh, Version 4.5.4, Synergy Software, Reading, PA, USA, 2018.