2,2'-Ethylenebis(1,3-dithiane) as polydentate μ₂-, μ₄- and μ₅- assembling ligand for the construction of sulphur-rich Cu(I), Hg(II) and heterometallic Cu(I)/Hg(II) coordination polymers featuring uncommon network architectures

Lydie Viau,^{*[a]} Michael Knorr,^{*[a]} Lena Knauer,^[b] Lukas Brieger,^[b] and Carsten

Strohmann*[b]

Table of contents

Figure S1 . View down the <i>b</i> axis of three layers of the 2D network of $[{Cu(\mu_2-I)_2Cu}(\mu_2-L1)_2]_n$ CP1	. 3
Figure S2 . View down the <i>c</i> axis of two layers of the 2D network of $[{Cu(\mu_2-I)_2Cu}(\mu_4-L1)]_n$ CP2	. 4
Figure S3. View down the <i>a</i> axis of the <i>bc</i> plane of CP3.	. 4
Figure S4 . View down the <i>c</i> axis on the <i>ab</i> plane showing two layers of the 2D network of [{Cu(μ_2 -	
Br)} ₂ (μ_2 -L1)(μ_4 -L1) _{0.5}] _n (CP4).	. 5
Figure S5 . View down the <i>c</i> axis on the <i>ab</i> plane showing two layers of the 2D network of [{Cu(μ_2 -	
Br)} ₂ (μ ₄ -L1)] _n CP5.	. 6
Figure S6. A view along the <i>b</i> axis of the crystal packing of CP6 . The C—H. Br hydrogen bonds are	
shown as dashed lines	. 7
Figure S7. View down the c axis on the ab plane showing two layers of the 2D network of $[{Cu}]_{2^{-1}}$	
Cl) ₂ Cu}(µ ₄ -L1)] ₂ CP7	. 8
Figure S8. View of the unit cell of CP9 containing two parallel running 1D ribbons.	. 8
Figure S9. View of the packing of the ribbons of CP10 within the unit cell.	.9
Figure S10 View of the association of parallel running 1D chains of $[(HgBr_2)(u_2-L2)]_{\alpha}$ (CP11) through	
intermolecular H. Br bonding generating a 3D supramolecular network	9
Figure S11 Parallel arrangement of the ribbons of CP13 in the packing	10
Figure S12 View of the packing of three layers of the 2D network of $[{Cu(MeCN)}(Hg Br_2)(u_2-L1)_1 c_1]_1$	
(CP15)	10
Figure S13. Simulated and experimental PXRD patterns of CP1.	11
Figure S14. Simulated and experimental PXRD patterns of CP2.	11
Figure S15. Simulated and experimental PXRD patterns of CP3.	12
Figure S16. PXRD pattern of CP1 before and after heating at 300°C. Arrows and asterisk are assigned	d d
to CP3 and v-Cul respectively.	12
Figure S17. PXRD pattern of CP1 before and after addition of 1 equivalent Cul. Comparison with the	,
PXRD of CP3	13
Figure S18. Simulated and experimental PXRD patterns of CP4	13
Figure S19. Simulated and experimental PXRD patterns of CP5	14
Figure S20. PXRD patterns of CP6 before and after exposure to NEt ₃	14
Figure S21. Simulated and experimental PXRD patterns of CP7	15
Figure S22. Simulated and experimental PXRD patterns of CP8.	15
Figure S23. Simulated and experimental PXRD patterns of CP9.	16
Figure S24. Simulated and experimental PXRD patterns of CP12	16
Figure S25. Simulated and experimental PXRD patterns of CP13	17

Figure S26. Experimental PXRD patterns of CP13 obtained by addition of 1Cul to CP8 and of 1HgI2 t	о
CP1	17
Figure S27. Simulated and experimental PXRD patterns of CP14	18
Figure S28. Simulated and experimental PXRD patterns of CP15	18
Figure S29. ATR-IR spectrum of CP6.	19
Figure S30. IR spectra of CP6 before and after exposure to NEt ₃	19
Figure S31. ATR-IR spectrum of CP13.	20
Figure S32. ATR-IR spectrum of CP14.	20
Figure S33. ATR-IR spectrum of CP15.	21
Figure S34. TGA traces and its first derivatives of CP1 under air flow	21
Figure S35. TGA traces and its first derivatives of CP2 under air flow	22
Figure S36. TGA traces and its first derivatives of CP3 under air flow	22
Figure S37. TGA traces and its first derivatives of CP4 under air flow	23
Figure S38. TGA traces and its first derivatives of CP5 under air flow	23
Figure S39. TGA traces and its first derivatives of CP6 under air flow	24
Figure S40.TGA traces and its first derivatives of CP7 under air flow	24
Figure S41. Images of CP6 before and after exposure to NEt ₃ vapor	25
Table S1. Crystal Data, Data Collection and Structure Refinement for L1 and CP1.	26
Table S2. Crystal Data, Data Collection and Structure Refinement for CP2 and CP3.	27
Table S3. Crystal Data, Data Collection and Structure Refinement for CP4 and CP5.	28
Table S4. Crystal Data, Data Collection and Structure Refinement for CP6 at 100K and 200K.	29
Table S5. Crystal Data, Data Collection and Structure Refinement for CP7 and CP8.	30
Table S6. Crystal Data, Data Collection and Structure Refinement for CP9 and CP10.	31
Table S7. Crystal Data, Data Collection and Structure Refinement for CP11 and CP13.	32
Table S8. Crystal Data, Data Collection and Structure Refinement for CP14 and CP15.	33
Table S9. Crystal Data, Data Collection and Structure Refinement for D1 and M1	34
Table S10. Hydrogen bond geometry (Å, °) in CP6.	35
Table S11. Hydrogen bond geometry (Å, °) in CP11.	35

Figure S1. View down the *b* axis of three layers of the 2D network of $[{Cu(\mu_2-I)_2Cu}(\mu_2-L1)_2]_n$ **CP1**.

Selected angles (°) at 100 K: Cu1A-IIA-Cu4¹ 65.144(10), Cu2-I2A-Cu2² 64.360(9), Cu3-I3-Cu3³ 66.954(9), Cu4-I4-Cu1A⁴ 65.427(9), I1A-Cu1A-I4¹ 114.236(11), I1A-Cu1A-Cu4¹ 57.537(7), I4¹-Cu1A-Cu4¹ 56.950(8), S2-Cu1A-I1A 108.639(15), S2-Cu1A-I4¹ 94.816(15), S2-Cu1A-Cu4¹ 116.447(17), S2-Cu1A-S3 136.45(2), S3-Cu1A-IIA 98.417(17), S3-Cu1A-I4¹ 104.548(16), S3-Cu1A-Cu4¹ 106.776(16), I2A-Cu2-I2A² 115.641(9), I2A²-Cu2-Cu2² 57.281(8), I2A-Cu2-Cu2² 58.361(8), S6-Cu2-I2A² 97.718(14), S6-Cu2-I2A 99.428(14), S6-Cu2-Cu2² 106.242(16), S7-Cu2-I2A 96.568(14), S7-Cu2-I2A² 106.490(14), S7-Cu2-Cu2² 112.012(16), S7-Cu2-S6 141.460(19), I3-Cu3-I3³ 113.046(8), I3³-Cu3-Cu3³ 57.325(8), I3-Cu3-Cu3³ 57.325(8), S10-Cu3-I3³ 93.476(13), S10-Cu3-I3 108.460(14), S10-Cu3-Cu3³ 109.864(15), S10-Cu3-S11 121.608(18), S11-Cu3-I3 111.015(14), S11-Cu3-I3³ 108.138(14), S11-Cu3-Cu3³ 127.358(17), I1A⁴-Cu4-Cu1A⁴ 57.318(9), I4-Cu4-I1A⁴ 114.687(10), I4-Cu4-Cu1A⁴ 57.624(8), S14-Cu4-I1A⁴ 103.824(15), S14-Cu4-I4 110.421(14), S14-Cu4-Cu1A⁴ 127.750(17), S15-Cu4-I1A⁴ 126.926(18). Symmetry transformations used to generate equivalent atoms: ¹+ *x*, + *y*, 1+*z*; ²1-*x*, 2-*y*, 1-*z*; ³1-*x*, 1-*y*, 1-*z*; ⁴+*x*,+*y*, 1+*z*.

Figure S2. View down the *c* axis of two layers of the 2D network of $[{Cu(\mu_2-I)_2Cu}(\mu_4-L1)]_n$ **CP2**.

Selected angles (°) at 100 K: S1–Cu–S2 118.02(3), S1–Cu–I 118.40(3), S1–Cu–I# 94.81(3), S2–Cu–I 97.77(3), S2–Cu–I# 107.86(3), I–Cu–I# 121.050(17), Cu–I–Cu# 58.950(17). Symmetry transformations used to generate equivalent atoms: ¹-*x*, 2-*y*, 1-*y*; ²-1+*x*, +*y*, +*z*; ³1-*x*, 2-*y*, 2-*z*.

Figure S3. View down the *a* axis of the *bc* plane of CP3.

Figure S4. View down the *c* axis on the *ab* plane showing two layers of the 2D network of $[{Cu(\mu_2-Br)}_2(\mu_2-L1)(\mu_4-L1)_{0.5}]_n$ (CP4).

Selected bond angles [°] at 100 K: Cu2–Br1–Cu1 97.945(19), Cu2–Br2–Cu1¹ 127.267(17), Br1-Cu1-Br2² 113.937(19), S1-Cu1-Br1 105.47(2), S1-Cu1-Br2² 100.66(2), S3-Cu1-Br1 112.49(2), S3-Cu1-Br2² 98.30(2), S3-Cu1-S1 125.31(3), Br1-Cu2-Br2 111.701(18), Br1-Cu2-Br2 111.701(18), S2³-Cu2-Br1 101.31(3), S2³-Cu2-Br2 106.02(2), S4-Cu2-Br1 114.21(2), S4-Cu2-Br2 109.49(3), S4-Cu2-S2³ 113.64(3). Symmetry transformations used to generate equivalent atoms: ${}^{1}+x$, ${}^{1}/_{2}-y$, ${}^{1}/_{2}+z$; ${}^{2}1-x$, 1-y, 1-z; ${}^{3}+x$, ${}^{1}/_{2}-y$, ${}^{4}1-x$, ${}^{-1}/_{2}+y$, ${}^{1}/_{2}-z$, ${}^{5}1-x$, ${}^{1}/_{2}+y$, ${}^{1}/_{2}-z$.

Figure S5. View down the *c* axis on the *ab* plane showing two layers of the 2D network of $[{Cu(\mu_2-Br)}_2(\mu_4-L1)]_n$ CP5.

Selected bond angles [°] at 100 K: S1–Cu1–S3⁴ 111.34(3), S2–Cu2–S4³ 110.63(3), Cu1-Br1-Cu2¹ 95.446(17), Cu1-Br2-Cu2 100.585(17), Br1-Cu1-Br2 110.070(17), S1-Cu1-Br1 107.80(2), S1-Cu1-Br2 117.62(2), S3⁴-Cu1-Br1 113.18(2), S3⁴-Cu1-Br2 96.68(2), Br2-Cu2-Br1² 103.363(17), S2-Cu2-Br1² 101.45(2), S2-Cu2-Br2 118.97(2), S4³-Cu2-Br1² 122.25(2), S4³-Cu2-Br2 101.16(2) Symmetry transformations used to generate equivalent atoms: ¹x, ¹/₂-y, ¹/₂+z; ²+x, ¹/₂-y, ¹/₂+z; ³1-x, -1/2+y, 1/2-z; ⁴1-x,1-y,1-z.

Figure S6. A view along the *b* axis of the crystal packing of CP6. The C—H \cdots Br hydrogen bonds are shown as dashed lines.

Selected bond angles [°] at 100 K: Cu6-Br1-Cu1 86.095(11), Cu2-Br2-Cu4¹ 85.690(10), Cu2-Br3-Cu3 86.593(10), Cu3-Br4-Cu4 88.610(10), Cu5-Br5-Cu1² 87.092(10), Cu6-Br6-Cu5 90.168(10), Br5¹-Cu1-Br1 114.647(11), S1-Cu1-Br1 88.147(13), S1-Cu1-Br5¹ 116.754(14), N1-Cu1-Br1 102.761(5), N1-Cu1-Br5¹ 103.15(5), N1-Cu1-S1 129.55(5), Br3-Cu2-Br2 113.534(11), S3-Cu2-Br2 119.320(15), S3-Cu2-Br3 127.119(15), Br4-Cu3-Br3 110.546(11), S4-Cu3-Br3 119.028(143), S4-Cu3-Br4 110.145(14), S4-Cu3-S5 110.445(17), S5-Cu3-Br3 89.848(13), S5-Cu3-Br4 115.767(14), Br4-Cu4-Br2² 110.040(10), S6-Cu4-Br2² 92.521(14), S6-Cu4-Br4 119.944(14), N2-Cu4-Br2² 101.94(5), N2-Cu4-Br4 100.99(5), N2-Cu4-S6 128.49(5), Br5-Cu5-Br6 111.723(10), S2²-Cu5-Br5 118.267(14), S2²-Cu5-Br6 91.616(13), S7-Cu5-Br5 108.229(143), S7-Cu5-Br6 116.736(13), S7-Cu5-S2² 109.898(16), Br1-Cu6-S1 81.800(12), Br6-Cu6-Br1 118.119(12), Br6-Cu6-S1 105.731(14), S8-Cu6-Br1 114.194(15), S8-Cu6-Br6 125.243(15), S8-Cu6-S1 96.326(16), Cu1-S1-Cu6 84.189(15) Symmetry transformations used to generate equivalent atoms: ¹+x,-1+y,+z; ²+x,1+y,+z.

Figure S7. View down the *c* axis on the *ab* plane showing two layers of the 2D network of $[{Cu(\mu_2-Cl)_2Cu}(\mu_4-L1)]_n CP7.$

Figure S8. View of the unit cell of CP9 containing two parallel running 1D ribbons.

Figure S9. View of the packing of the ribbons of CP10 within the unit cell.

Figure S10. View of the association of parallel running 1D chains of $[(HgBr_2)(\mu_2-L2)]_n$ (CP11) through intermolecular H...Br bonding generating a 3D supramolecular network.

Figure S11. Parallel arrangement of the ribbons of CP13 in the packing.

Figure S12. View of the packing of three layers of the 2D network of $[{Cu(MeCN)}(HgIBr_2)(\mu_2-L1)_{1.5}]_n$ (CP15).

Figure S13. Simulated and experimental PXRD patterns of CP1.

Figure S14. Simulated and experimental PXRD patterns of CP2.

Figure S15. Simulated and experimental PXRD patterns of CP3.

Figure S16. PXRD pattern of **CP1** before and after heating at 300°C. Arrows and asterisk are assigned to **CP3** and γ -CuI respectively.

Figure S17. PXRD pattern of CP1 before and after addition of 1 equivalent CuI. Comparison with the PXRD of CP3.

Figure S18. Simulated and experimental PXRD patterns of CP4.

Figure S19. Simulated and experimental PXRD patterns of CP5.

Figure S20. PXRD patterns of CP6 before and after exposure to NEt_{3.}

Figure S21. Simulated and experimental PXRD patterns of CP7.

Figure S22. Simulated and experimental PXRD patterns of CP8.

Figure S23. Simulated and experimental PXRD patterns of CP9.

Figure S24. Simulated and experimental PXRD patterns of CP12.

Figure S25. Simulated and experimental PXRD patterns of CP13.

Figure S26. Experimental PXRD patterns of CP13 obtained by addition of 1CuI to CP8 and of 1HgI2 to CP1.

Figure S27. Simulated and experimental PXRD patterns of CP14.

Figure S28. Simulated and experimental PXRD patterns of CP15.

Figure S29. ATR-IR spectrum of CP6.

Figure S30. IR spectra of CP6 before and after exposure to NEt₃.

Figure S31. ATR-IR spectrum of CP13.

Figure S32. ATR-IR spectrum of CP14.

Figure S33. ATR-IR spectrum of CP15.

Figure S34. TGA traces and its first derivatives of CP1 under air flow.

Figure S35. TGA traces and its first derivatives of CP2 under air flow.

Figure S36. TGA traces and its first derivatives of CP3 under air flow.

Figure S37. TGA traces and its first derivatives of CP4 under air flow.

Figure S38. TGA traces and its first derivatives of CP5 under air flow.

Figure S39. TGA traces and its first derivatives of CP6 under air flow.

Figure S40.TGA traces and its first derivatives of CP7 under air flow.

Figure S41. Images of CP6 before and after exposure to NEt_3 vapor.

Compound	L1	CP1	
Formula	$C_{10}H_{18}S_4$	$C_{40}H_{72}Cu_4I_4S_{16}$	
Formula weight	266.48	1827.69	
Temperature/K	100.0	100.0	
Wavelength/Å	0.71073	0.71073	
Crystal system	monoclinic	monoclinic	
Space group	$P2_1/n$	$P2_1/n$	
a/Å	4.8578(3)	18.4505(6)	
b/Å	10.6581(6)	18.2209(5)	
c/Å	12.0302(11)	19.1191(7)	
lpha /°	90	90	
eta /°	92.676(4)	110.0440(10)	
$\gamma/^{\circ}$	90	90	
Volume/ Å ³	622.18(8)	6038.2(3)	
Ζ	2	4	
Density (calc.) g/cm ³	1.422	2.010	
Absorption coefficient/mm ⁻¹	0.725	4.018	
<i>F</i> (000)	284.0	3584.0	
Crystal size/mm ³	$1.177\times0.158\times0.14$	$0.453 \times 0.384 \times 0.062$	
2θ range for data collection/°	5.108 to 72.732	4.394 to 59.998	
	$-8 \le h \le 8,$	$-25 \le h \le 25$,	
Index ranges	$-17 \le k \le 17$,	$-25 \le k \le 25,$	
	$-18 \le l \le 20$	$-26 \le l \le 26$	
Reflections collected	12460	121045	
Independent reflections	$3000 [R_{int} = 0.0306]$	17609 [Rint = 0.0322]	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	3000/0/64	17609/0/588	
Goodness-of-fit on F^2	1.057 1.082		
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0215, wR_2 = 0.0545 \qquad \qquad R_1 = 0.0205, wR_2 = 0.04$		
<i>R</i> indices (all data)	$R_1 = 0.0255, wR_2 = 0.0566$	$R_1 = 0.0253, wR_2 = 0.0478$	
Largest diff. peak and hole/e. \AA^{-3}	0.44/-0.28	2.09/-1.05	

 Table S1. Crystal Data, Data Collection and Structure Refinement for L1 and CP1.

Compound	CP2	СР3	
Formula	$C_{10}H_{18}Cu_2I_2S_4$	$C_5H_9Cu_2I_2S_2$	
Formula weight	647.36	514.12	
Temperature/K	100.0	100.0	
Wavelength/Å	0.71073	0.71073	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
a/Å	6.0654(2)	6.6244(19)	
b/Å	8.2884(3)	7.837(3)	
c/Å	8.4381(3)	11.230(4)	
lpha /°	88.411(2)	83.032(11)	
β /°	87.976(2)	73.216(10)	
γ/°	86.729(2)	75.644(12)	
Volume/ $Å^3$	423.11(3)	540.0(3)	
Z	1	2	
Density (calc.) g/cm^3	2.541	3.162	
Absorption coefficient/mm ⁻¹	6.635	9.981	
<i>F</i> (000)	306.0	470.0	
Crystal size/mm ³	$0.114 \times 0.062 \times 0.059$	$0.416 \times 0.075 \times 0.065$	
2θ range for data collection/°	4.832 to 56.984	3.794 to 52.01	
	$-8 \le h \le 8$,	$7 \le h \le 8$,	
Index ranges	$-11 \le k \le 11$,	$-9 \le k \le 9,$	
-	$-11 \le l \le 11$	$-13 \le 1 \le 13$	
Reflections collected	14022	2113	
Independent reflections	2144 [$R_{int} = 0.0465$]	2113 [R _{int} = ?,]	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	2144/0/82	2113/0/101	
Goodness-of-fit on F^2	1.108	1.085	
Final P indices $[I > 2\sigma(I)]$	$R_1 = 0.0257,$	$R_1 = 0.0269,$	
[1>20(1)]	$wR_2 = 0.0559$	$wR_2 = 0.0753$	
R indices (all data)	$R_1 = 0.0328,$	$R_1 = 0.0285,$	
A maices (an data)	$wR_2 = 0.0592$	$wR_2 = 0.0767$	
Largest diff. peak and hole/e. $Å^{-3}$	0.96/-0.81	1.88/-0.82	

 Table S2. Crystal Data, Data Collection and Structure Refinement for CP2 and CP3.

Compound	CP4	CP5		
Formula	$C_{15}H_{27}Br_2Cu_2S_6$	$C_{10}H_{18}Br_2Cu_2S_4$		
Formula weight	686.62	553.38		
Temperature/K	100.0	100.0		
Wavelength/Å	0.71073	0.71073		
Crystal system	monoclinic	monoclinic		
Space group	$P2_1/c$	$P2_1/c$		
a/Å	12.9413(15)	8.1301(12)		
b/Å	13.0872(11)	13.8417(14)		
c/Å	14.5879(17)	14.591(2)		
lpha /°	90	90		
β /°	115.754(5)	95.315(7)		
γ/°	90	90		
Volume/ Å ³	2225.3(4)	1634.9(4)		
Z	4	4		
Density (calc.) g/cm ³	2.049	2.248		
Absorption coefficient/mm ⁻¹	6.065	7.979		
<i>F</i> (000)	1364.0	1080.0		
Crystal size/mm ³	$0.294 \times 0.125 \times 0.043$	$0.133 \times 0.084 \times 0.034$		
2θ range for data collection/°	4.392 to 61.136	5.608 to 64.994		
Index ranges	$18 \le h \le 18,$ -18 $\le k \le 15,$ -20 $\le 1 \le 20$	$-12 \le h \le 12,$ $-20 \le k \le 20,$ $-22 \le 1 \le 22$		
Reflections collected	47344	62361		
Independent reflections	$6754 [R_{int} = 0.0547]$	5923 [Rint = 0.0370]		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F2		
Data / restraints / parameters	6754/0/226 5923/0/16			
Goodness-of-fit on F^2	1.047	1.088		
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0346, wR_2 = 0.0596$ $R_1 = 0.0303, wR_2 = 0.072$			
<i>R</i> indices (all data)	$R_1 = 0.0543, wR_2 = 0.0665$ $R_1 = 0.0351, wR_2 = 0.074$		$R_1 = 0.0543, wR_2 = 0.0665$ $R_1 = 0.0351, w$	
Largest diff. peak and hole/e. \AA^{-3}	0.81/-0.81	1.57/-1.09		

 Table S3. Crystal Data, Data Collection and Structure Refinement for CP4 and CP5.

Compound	CP6	CP6
Formula	$C_{24}H_{42}Br_6Cu_6N_2S_8$	$C_{24}H_{42}Br_6Cu_6N_2S_8$
Formula weight	1475.77	1475.77
Temperature/K	100.0	200K
Wavelength/Å	0.71073	0.71073
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a/Å	7.8786(4)	7.8928(11)
b/Å	9.8046(5)	9.8456(14)
c/Å	26.8573(15)	26.928(4)
lpha /°	87.562(2)	87.555(2)
eta /°	83.924(2)	84.017(2)
$\gamma/^{\circ}$	87.249(2)	87.229(2)
Volume/ \AA^3	2059.14(19)	2077.2(5)
Ζ	2	2
Density (calc.) g/cm ³	2.380	2.359
Absorption coefficient/mm ⁻¹	9.293	9.212
F(000)	1424.0	1424.0
Crystal size/mm ³	$0.163 \times 0.107 \times 0.043$	$0.163 \times 0.107 \times 0.043$
2θ range for data collection/°	4.162 to 72.658	4.144 to 67.504
	$-13 \le h \le 13$,	$-12 \le h \le 12$,
Index ranges	$-16 \le k \le 16,$	$-15 \le k \le 15,$
	$0 \le 1 \le 44$	$0 \le 1 \le 42$
Reflections collected	19959	16608
Independent reflections	19959 [$R_{int} = 0.0504$]	$16608 [R_{int} = 0.0501]$
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	19959/0/417	16608/0/417
Goodness-of-fit on F^2	1.021	1.000 D 0.0275 D 0.0502
Final <i>R</i> indices $[I > 2\sigma(I)]$	$\mathbf{K}_1 = 0.02/9, \ \mathbf{W}\mathbf{R}_2 = 0.0686$	$\mathbf{R}_1 = 0.02/6, \ \mathbf{W}\mathbf{R}_2 = 0.0683$
R indices (all data)	$R_1 = 0.0356, WR_2 = 0.0714$	$R_1 = 0.0369, WR_2 = 0.0715$
Largest diff. peak and hole/e. \AA^{-3}	0.83/-1.91	1.36/-1.57

Table S4. Crystal Data, Data Collection and Structure Refinement for **CP6** at 100K and 200K.

Compound	CP7	CP8	
Formula	$C_5H_9ClCuS_2$	$C_{10}H_{18}HgI_2S_4$	
Formula weight	232.23	720.87	
Temperature/K	100.0	100.0	
Wavelength/Å	0.71073	0.71073	
Crystal system	monoclinic	triclinic	
Space group	C2/m	P-1	
a/Å	18.3202(9)	9.3903(3)	
b/Å	6.7228(3)	9.8817(3)	
c/Å	6.1576(3)	10.0545(3)	
lpha /°	90	68.8700(10)	
eta /°	100.814(2)	79.6750(10)	
$\gamma/^{\circ}$	90	86.6570(10)	
Volume/ Å ³	744.92(6)	856.14(5)	
Ζ	4	2	
Density (calc.) g/cm ³	2.071	2.796	
Absorption coefficient/mm ⁻¹	3.751	13.062	
F(000)	468.0	656.0	
Crystal size/mm3	$0.232 \times 0.172 \times 0.035$	$0.459 \times 0.254 \times 0.174$	
2θ range for data collection/°	4.528 to 61.046	4.408 to 61.156	
Index ranges	$-26 \le h \le 26,$ $-9 \le k \le 9,$ $-8 \le 1 \le 8$	$-13 \le h \le 13,$ $-14 \le k \le 13,$ $-14 \le 1 \le 13$	
Reflections collected	12880	14810	
Independent reflections	1227 [$R_{int} = 0.0375$]	5243 [$R_{int} = 0.0289$]	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	1227/0/49	5243/0/155	
Goodness-of-fit on F^2	1.426	1.189	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0348, wR_2 = 0.0858$	$R_1 = 0.0242, wR_2 = 0.0590$	
<i>R</i> indices (all data)	$R_1 = 0.0387, wR_2 = 0.0871$	$R_1 = 0.0244, wR_2 = 0.0591$	
Largest diff. peak and hole/e. \AA^{-3}	1.64/-0.70	3.11/-2.46	

 Table S5. Crystal Data, Data Collection and Structure Refinement for CP7 and CP8.

Compound	CP9	CP10	
Formula	$C_{10}H_{18}Br_2HgS_4$	$C_5H_9Br_2HgS_2$	
Formula weight	626.89	493.65	
Temperature/K	100.0	100.0	
Wavelength/Å	0.71073	0.71073	
Crystal system	orthorhombic	monoclinic	
Space group	$Pna2_1$	C2/c	
a/A	18.1737(10)	8.2012(3)	
b/A	4.5256(2)	13.2979(5)	
c/A	19.0929(10)	18.6993(7)	
lpha /°	90	90	
eta /°	90	93.1840(10)	
$\gamma/^{\circ}$	90	90	
Volume/ Å ³	1570.33(14)	2036.17(13)	
Ζ	4	8	
Density (calc.) g/cm ³	2.652	3.221	
Absorption coefficient/mm ⁻¹	15.399	23.309	
F(000)	1168.0	1768.0	
Crystal size/mm ³	$0.217 \times 0.105 \times 0.034$	$0.25 \times 0.079 \times 0.074$	
2θ range for data collection/°	4.266 to 54.996	5.842 to 61.08	
Index ranges	$-23 \le h \le 23,$ $-5 \le k \le 5,$ $-24 \le 1 \le 24$	$-11 \le h \le 11,$ $-18 \le k \le 19,$ $-26 \le 1 \le 26$	
Reflections collected	53635	30365	
Independent reflections	$3609 [R_{int} = 0.0639]$	$3110 [R_{int} = 0.0563]$	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters Coodness of fit on F^2	3609/1/159	3110/0/91	
Final R indicas $[k, 2-(l)]$	$P_{\rm c} = 0.0182 \text{ wP}_{\rm c} = 0.0441$	$P_{\rm c} = 0.0214 \text{ yr} P_{\rm c} = 0.0614$	
R indices (all data)	$R_1 = 0.0102$, $wR_2 = 0.0441$ $R_1 = 0.0204$, $wR_2 = 0.0451$	$R_1 = 0.02314, WR_2 = 0.0614$ $R_1 = 0.0231, WR_2 = 0.0621$	
Largest diff. peak and hole/e. Å $^{-3}$	0.63/-0.53	1.58/-1.94	

 Table S6. Crystal Data, Data Collection and Structure Refinement for CP9 and CP10.

Compound	CP11	CP13	
Formula	$C_{10}H_{20}Br_4Hg_2S_4$	$C_9H_{15}CuHgI_3N_2S_2$	
Formula weight	989.32	860.18	
Temperature/K	100.0	100.00	
Wavelength/Å	0.71073	0.71073	
Crystal system	orthorhombic	triclinic	
Space group	Ama2	P-1	
a/Å	14.1565(12)	8.3763(8)	
b/Å	15.7413(13)	9.3131(8)	
c/A	4.5260(3)	14.2531(9)	
lpha /°	90	94.414(4)	
eta /°	90	102.209(4)	
$\gamma/^{\circ}$	90	113.075(4)	
Volume/ Å ³	1008.58(14)	983.86(14)	
Z	2	2	
Density (calc.) g/cm ³	3.258	2.904	
Absorption coefficient/mm ⁻¹	23.529	13.780	
<i>F</i> (000)	888.0	766.0	
Crystal size/mm ³	$0.128 \times 0.122 \times 0.046$	$0.287 \times 0.098 \times 0.096$	
2θ range for data collection/°	5.756 to 66.326	5.202 to 64.998	
Index ranges	$-21 \le h \le 21,$ $-24 \le k \le 24,$ $6 \le 1 \le 6$	$-12 \le h \le 12,$ $-14 \le k \le 14,$ $21 \le 1 \le 21$	
Reflections collected	8550	185883	
Independent reflections	$1968 [R_{int} = 0.0341]$	$7116 [R_{int} = 0.0381]$	
Refinement method	Full-matrix least-squares on E^2	Full-matrix least-squares on E^2	
Data / restraints / narameters	г 1968/1/51	г 7116/0/165	
Goodness-of-fit on F^2	0.969	1 116	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0176 \text{ w}R_2 = 0.0385$	$R_1 = 0.0204 \text{ w}R_2 = 0.0543$	
$\frac{1}{2} \frac{1}{2} \frac{1}$	$\mathbf{R}_1 = 0.0176, \text{ wr}\mathbf{R}_2 = 0.0303$	$R_1 = 0.0207, WR_2 = 0.0545$	
k indices (all data)	$\kappa_1 = 0.0190, \ W\kappa_2 = 0.0397$	$\mathbf{K}_1 = 0.0212, \ \mathbf{W}\mathbf{K}_2 = 0.0556$	
Largest diff. peak and hole/e. \AA^{-3}	1.00/-0.97	2.80/-2.03	

 Table S7. Crystal Data, Data Collection and Structure Refinement for CP11 and CP13.

Compound	CP14	CP15	
Formula	$C_{22}H_{38}Cu_2Hg_2I_6N_4S_4$	$C_{17}H_{30}Br_2CuHgINS_6$	
Formula weight	1776.46	991.86	
Temperature/K	100.0	100.00	
Wavelength/Å	0.71073	0.71073	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
a/A	9.8483(8)	10.1654(12)	
b/A	14.9259(16)	12.582(2)	
c/A	15.2501(13)	13.033(2)	
lpha /°	108.914(3)	67.070(7)	
eta /°	95.043(5)	69.373(5)	
$\gamma/^{\circ}$	94.515(3)	76.469(6)	
Volume/ \AA^3	2098.7(3)	1427.8(4)	
Ζ	2	2	
Density (calc.) g/cm ³	2.811	2.307	
Absorption coefficient/mm ⁻¹	12.924	10.439	
F(000)	1596.0	934.0	
Crystal size/mm ³	$0.199 \times 0.169 \times 0.142$	$0.199 \times 0.072 \times 0.041$	
2θ range for data collection/°	4.694 to 64,998	4.716 to 61.124	
	$-14 \le h \le 14$,	$-13 \le h \le 14$,	
Index ranges	$-22 \le k \le 22,$	$-17 \le k \le 17$,	
	$-23 \le l \le 23$	$-18 \le l \le 18$	
Reflections collected	732333	38896	
Independent reflections	$15174 [R_{int} = 0.0705]$	$8594 [R_{int} = 0.0318]$	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	15174/0/452	8594/0/284	
Goodness-of-fit on F^2	1.115	1.098	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0153, wR_2 = 0.0366$	$R_1 = 0.0229, wR_2 = 0.0354$	
R indices (all data)	$R_1 = 0.0160, wR_2 = 0.0370$	$R_1 = 0.0316, wR_2 = 0.0377$	
Largest diff. peak and hole/e. \AA^{-3}	1.20/-1.43	0.80/-0.93	

 Table S8. Crystal Data, Data Collection and Structure Refinement for CP14 and CP15.

Compound	D1 M1		
Formula	$C_{10}H_{20}Hg_2I_4S_2$	$C_{10}H_{20}Br_2HgS_4$	
Formula weight	1177.28	628.91	
Temperature/K	100.0	100.0	
Wavelength/Å	0.71073	0.71073	
Crystal system	monoclinic	orthorhombic	
Space group	$P2_1/n$	$P2_{1}2_{1}2$	
a/Å	9.7802(8)	8.2203(3)	
b/A	10.0351(10)	22.7657(9)	
c/A	11.6340(10)	4.4494(2)	
lpha /°	90	90	
eta /°	90.652(3)	90	
$\gamma / ^{\circ}$	90	90	
Volume/ Å ³	1141.75(18)	832.66(6)	
Ζ	2	2	
Density (calc.) g/cm^3	3.424	2.508	
Absorption coefficient/mm ⁻¹	19.194	14.521	
F(000)	1032.0	588.0	
Crystal size/mm ³	$0.308 \times 0.157 \times 0.134$	$0.332 \times 0.044 \times 0.037$	
2θ range for data collection/°	5.472 to 58	6.114 to 55.962	
Index ranges	$-13 \le h \le 13$, $-13 \le k \le 13$,	$-10 \le h \le 10,$ $-30 \le k \le 30,$	
	$-15 \le 1 \le 15$	$-5 \le l \le 5$	
Reflections collected	50811 2020 [D 0 0528]	18946 2004 (D	
Independent reflections	$3029 [R_{int} = 0.0528]$	$2004 [R_{int} = 0.0500]$	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F	
Data / restraints / parameters	3029/0/93	2004/0/85	
Goodness-of-fit on F^2	1.187	1.139	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0202, wR_2 = 0.0462$	$R_1 = 0.0192, wR_2 = 0.0326$	
<i>R</i> indices (all data)	$R_1 = 0.0203, wR_2 = 0.0463$	$R_1 = 0.0213, wR_2 = 0.0334$	
Largest diff. peak and hole/e. Å ⁻³	1.73/-2.73	0.76/-0.92	

Table S9. Crystal Data, Data Collection and Structure Refinement for D1 and M1.

<i>D</i> —H···A	D—H	$H \cdots A$	$D \cdots A$	<i>D</i> —Н…А
C3—H3 A ···S7 ¹	0.99	3.05	3.698(4)	124.2
$C7$ — $H7$ ···Br 3^2	1.00	2.70	3.649(4)	157.8
C8—H8 B ···Br2 ²	0.99	2.86	3.598(4)	132.4
C9—H9 A ···Br2 ³	0.99	3.05	3.695(4)	124.2
C17—H17…Br6 ⁴	1.00	2.72	3.678(4)	161.2
C18—H18 A ···N1 ⁵	0.99	2.85	3.679(6)	141.2
C20—H20 B ···Br1 ⁶	0.99	2.95	3.679(4)	131.3
C22—H22 B ···Br1 ⁴	0.98	2.85	3.692(5)	144.2
C22—H22 C ···Br5 ⁶	0.98	2.94	3.621(5)	127.2

Table S10. Hydrogen bond geometry (Å, $^{\circ}$) in CP6.

Symmetry codes: ¹1+X,-1+Y,+Z; ²1+X,+Y,+Z; ³1-X,-Y,1-Z; ⁴-1+X,+Y,+Z; ⁵+X,1+Y,+Z; ⁶1-X,1-Y,2-Z

Table S11. Hydrogen bond geometry (Å, °) in **CP11**.

<i>D</i> —H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C1—H1 B ···Br1 ¹	0.99	3.10	3.758(4)	124.7
C1—H1 B ···Br1 ²	0.99	2.87	3.667(4)	138.3