Assembly of a coordination polymer with sulphate-capped pentamolybdate units and copper: Synthesis, Structure, Magnetic and Catalytic studies

Yesleen Gupta,^[a] Zakiullah Zaidi,^[a] Sakshi Mehta,^[b] Pranay R. Chandewar,^[c] Nikhil Kumar,^[d] Avijit K. Paul,^[d] Debaprasad Shee,^[c] Abhishake Mondal,^[b] Laxmi Gayatri Sorokhaibam,^[a] Abhishek Banerjee*^[a]

^[a]: Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India

^[b]: Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India

^[c]: Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India

^[d]: Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, India

SUPPORTING INFORMATION

 $Table S1: Selected bond lengths (Å) and bond valence sum calculations for compound 1, \\ [Cu^{II}(C₅H₅N)₄]₃[{Mo^{V1}₅O₁₅(SO₄)₂}{Cu^{II}(C₅H₅N)₃(DMF)(H₂O)}] [Mo^{V1}₅O₁₅(SO₄)₂]•2DMF$

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mol-OlA	1.706(4)	1.7215813	
Mo1-O15	1.8969(4)	1.0276733	
Mo1-O15S	2.4504(4)	0.2302364	$\Sigma(Mo1) = 6.0468364$
Mo1-O1S	2.3275(4)	0.3209447	
Mo1-O12	1.8871(4)	1.0552564	
Mo1-O1C	1.7126(4)	1.6911443	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo2-O2B	1.7091(4)	1.707275	
Mo2-O2A	1.6977(4)	1.760637	
Mo2-O12	1.8972(4)	1.0268404	$\Sigma(Mo2) = 6.0297979$
Mo2-O2S	2.3492(4)	0.3026631	
Mo2-O23S	2.412(4)	0.2554152	
Mo2-O23	1.9156(4)	0.9770248	
Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo3-O3B	1.6995(4)	1.7520925	

Mo3-O3B	1.6995(4)	1.7520925	
Mo3-O3A	1.7188(4)	1.6630423	
Mo3-O23	1.9107(4)	0.9900498	$\Sigma(Mo3) = 6.0534558$
Mo3-O23S	2.2637(4)	0.3813438	
Mo3-O34S	2.4207(4)	0.2494795	
Mo3-O34	1.9006(4)	1.017448	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo4-O4B	1.7035(5)	1.733253	
Mo4-O4A	1.7029(5)	1.736066	
Mo4-O34	1.9153(4)	0.9778173	$\Sigma(Mo4) = 5.9494347$
Mo4-O34S	2.4145(4)	0.2536952	
Mo4-O45S	2.4216(4	0.2488734	
Mo4-O45	1.9071(4)	0.9997298	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo5-O5A	1.7004(4)	1.7478359	
Mo5-O45	1.9141(4)	0.9809938	
Mo5-O45S	2.3867(4)	0.273491	$\Sigma(Mo5) = 6.0084316$
Mo5-O15S	2.2759(4)	0.3689748	
Mo5-O15	1.9162(4)	0.9754417	
Mo5-O5C	1.7191(4)	1.6616945	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo6-O6A	1.7024(4)	1.7384136	
Mo6-O610	1.895(4)	1.0329641	
Mo6-O61S	2.4667(4)	0.2203137	$\Sigma(Mo6) = 6.045759$
Mo6-O6S	2.32(4)	0.3275167	
Mo6-O67	1.8904(4)	1.0458865	
Mo6-O6C	1.7149(4)	1.6806644	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo7-O7A	1.6778(5)	1.8579235	
Mo7-O7B	1.7112(5)	1.6975554	
Mo7-O67	1.8895(4)	1.0484337	$\Sigma(Mo7) = 6.166415$
Mo7-O7S	2.3795(4)	0.2788651	
Mo7-O78S	2.3994(3)	0.2642629	
Mo7-O78	1.8999(4)	1.0193745	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo8-O8B	1.7025(4)	1.7379438	
Mo8-O8A	1.7158(4)	1.6765813	
Mo8-O78	1.9296(4)	0.940747	$\Sigma(Mo8) = 5.9651965$
Mo8-O78S	2.2695(4)	0.3754125	
Mo8-O89S	2.4402(4)	0.2366718	
Mo8-O89	1.9078(4)	0.9978402	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo9-O9B	1.7037(4)	1.7323164	
Mo9-O9A	1.7026(5)	1.7374742	
Mo9-O89	1.9119(4)	0.9868441	$\Sigma(Mo9) = 5.9405739$
Mo9-O89S	2.4459(4)	0.2330537	
Mo9-O91S	2.3862(4)	0.2738609	
Mo9-O910	1.9156(4)	0.9770248	
Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Mo10-O10A	1.7022(4)	1.7393535	

Mo10-O910	1.9056(4)	1.003791	
Mo10-O91S	2.4206(4)	0.249547	$\Sigma(Mo10) = 6.0120666$
Mo10-O61S	2.2584(4)	0.3868456	
Mo10-O610	1.9214(4)	0.9618287	
Mo10-O10C	1.7171(4)	1.6707009	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Cu1-O1C	2.3623 (4)	0.157748	
Cu1-O6C	2.3615(4)	0.1580894	
Cul-N11	2.061(5)	0.432645	$\Sigma(Cu1) = 2.0929649$
Cu1-N12	2.0502(5)	0.4454596	
Cu1-N13	2.0473(5)	0.4489648	
Cu1-N14	2.0464(5)	0.4500582	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Cu2-O10C	2.3752(4)	0.1523429	
Cu2-O8A	2.4447(4)	0.126254	
Cu2-N21	2.0198(4)	0.4836052	$\Sigma(Cu2) = 2.1756362$
Cu2-N22	2.0265(5)	0.4749268	
Cu2-N23	2.0247(4)	0.4772429	
Cu2-N24	2.0373(5)	0.4612644	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Cu3-O3A	2.4757(4)	0.116107	
Cu3-O5C	2.3327(4)	0.1708863	
Cu3-N31	2.0281(5)	0.4728775	$\Sigma(Cu3) = 2.164094$
Cu3-N32	2.0264(4)	0.4750552	
Cu3-N33	2.0362(5)	0.4626378	
Cu3-N34	2.0331(4)	0.4665302	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
Cu4-O1W	2.0056(5)	0.4136634	
Cu4-O1D	2.235(6)	0.2225279	
Cu4-O7B	2.8362(5)	0.0438243	$\Sigma(Cu4) = 2.1197235$
Cu4-N41	2.0462(7)	0.4503015	
Cu4-N42	1.9937(5)	0.5189509	
Cu4-N43	2.03(5)	0.4704554	
Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum
S1-O1S1	1.4332(4)	1.6747697	
S1-O2S	1.4822(4)	1.4670348	$\Sigma(S1) = 5.8269783$
S1-O34S	1.514(4)	1.3462155	
S1-O15S	1.5160(4)	1.3389583	

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum	
S2-O1S2	1.4284(4)	1.696638		
S2-O1S 1.4563(4)		1.5734069	$\Sigma(S2) = 5.9869669$	
S2-O23S	1.5101(4)	1.3604804		
S2-O45S	1.5112(4)	1.3564417		
Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum	
S3-O1S3	1.4333(4)	1.6743171		
S3-O6S	1.4665(4)	1.5306243	$\Sigma(S3) = 5.9182152$	
S3-O91S	1.5096(4)	1.3623201		
S3-O78S	1.5127(4)	1.3509537		
Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum	
S4-O1S4	1.4303(4)	1.6879479		
S4-07S	1.4831(4)	1.4634707	$\Sigma(S1) = 5.901076$	
S4-O89S	1.5014(4)	1.3928491		
S4-O61S	1.5111(4)	1.3568083		

S No	Donor H Acceptor	D H (Å)	H A (Å)	D A (Å (°))	D H A (°)
1.	O1W H1WA O2D#1	0.89	1.91	2.6749(1)	142
2.	O1W H1WB O7S	0.88	1.95	2.6911(1)	141
3.	C4D H4D2 O9A#2	0.98	2.56	3.3648(1)	139
4.	C111 H111 O1C	0.95	2.49	3.0429(1)	117
5.	C112 H112 O5A ^{#3}	0.95	2.48	3.127(1)	125
6.	C114 H114 O7A	0.95	2.49	3.2609(1)	138
7.	С115 Н115 О6С	0.95	2.55	3.1276(1)	119
8.	C121 H121 O1C	0.95	2.40	3.0068(1)	122
9.	C123 H123 O1S3#4	0.95	2.41	3.1067(1)	130
10.	C125 H125 O6S	0.95	2.46	3.0364(1)	119
11.	С131 Н131 О6С	0.95	2.45	3.0572(1)	122
12.	C132 H132 O10A#5	0.95	2.50	3.0511(1)	117
13.	С134 Н134 О2В	0.95	2.45	3.2298(1)	139
14.	С135 Н135 О1С	0.95	2.52	3.1409(1)	123
15.	С141 Н141 О6С	0.95	2.32	2.9412(1)	122
16.	C143 H143 O1S2#6	0.95	2.38	3.0218(1)	125
17.	C144 H144 O1S2#6	0.95	2.55	3.1004(1)	117
18.	C145 H145 O1C	0.95	2.52	3.1455(1)	123
19.	C145 H145 O1S	0.95	2.36	3.0695(1)	131'
20.	C211 H211 O8A#7	0.95	2.51	3.0814(1)	118
21.	C211 H211 O8B ^{#7}	0.95	2.56	3.2734(1)	132'
22.	C212 H212 O1S4 ^{#8}	0.95	2.59	3.3551(1)	138
23.	C213 H213 O8B ^{#8}	0.95	2.59	3.2657(1)	128
24.	C221 H221 O8A ^{#7}	0.95	2.46	2.9977(1)	116
25.	C231 H231 O12 ^{#5}	0.95	2.32	3.2622(1)	169
26.	С225 Н225 О10С	0.95	2.56	3.0821(1)	115
27.	С231 Н231 О10А	0.95	2.45	3.2887(1)	147
28.	C232 H232 O10A#5	0.95	2.52	3.1621(1)	125
29.	C245 H245 O78 ^{#7}	0.95	2.54	3.3075(1)	138
30.	С311 Н311 О5С	0.95	2.547	3.0542(1)	112
31.	C313 H313 O67#3	0.95	2.58	3.4912(1)	161
32.	C315 H315 O3A ^{#7}	0.95	2.51	3.0539(1)	117
33.	С321 Н321 О5А	0.95	2.39	3.2779(1)	155
34.	С331 Н331 О5С	0.95	2.56	3.150(1)	117
35.	C335 H335 O23 ^{#9}	0.95	2.43	3.1636(1)	133
36.	С341 Н341 О5С	0.95	2.55	3.1456(1)	121
37.	C343 H343 O3B ^{#10}	0.95	2.50	3.1667(1)	127
38.	C344 H344 O1S1 ^{#10}	0.95	2.57	3.3941(1)	145
39.	C345 H345 O3A ^{#9}	0.95	2.46	3.0931(1)	124

 Table S2:
 List of Hydrogen-bond interactions present in compound 1

40.	C345 H345 O3B ^{#9}	0.95	2.52	3.2496(1)	134'	
41.	С411 Н411 О7В	0.95	2.33	3.1517(1)	144	
42.	C412 H412 O4A ^{#3}	0.95	2.39	3.2391(1)	149	
43.	C414 H414 O23 ^{#11}	0.95	2.39	3.1536(1)	137	
44.	C415 H415 O1D	0.95	2.46	3.1188(1)	126	
45.	C415 H415 O2S ^{#11}	0.95	2.54	3.3266(1)	140'	
46.	C421 H421 O78	0.95	2.42	3.1576(1)	134	
47.	C424 H424 O9A ^{#12}	0.95	2.56	3.1848(1)	124	
48.	C425 H425 O2A ^{#11}	0.95	2.39	3.2930(1)	160	
49.	С432 Н432 ОбА	0.95	2.43	3.1875(1)	137	
50.	C434 H434 O3B	0.95	2.40	3.1756(1)	139	

Symmetry transformations used to generate equivalent atoms:

 $^{\#1} = x, y, 1+z$

 $^{\#2} = 2-x, 1/2+y, 3/2-z$

 $^{\#3} = 1-x, -y, 2-z$

 $^{\#4} = 2-x, -y, 2-z$

 $^{\#5} = 2-x, 1-y, 2-z$

#6 =1-x, 1-y, 2-z

 $^{\#7} = x, 1+y, z$

 $^{\#8} = 2-x, 1/2+y, 5/2-z$

 $^{\#9} = x, -1+y, z$

 $^{\#10} = 1-x, -1/2+y, 3/2-z$

^{#11} = x, 1/2-y, 1/2+z

 $^{\#12} = 2-x, -1/2+y, 5/2-z$

 Table S3: Comparision of literature reports of oxidative desulfurization process studied

 with dibenzothiophene and polyoxomolybdates as catalysts.

Sl. No.	Catalyst	Oxidant	Temperature (°C)	% Removal	References
1.	$H_6P_2Mo_{18}O_{62}$	H ₂ O ₂ /HCOOH	70	60	104
2.	$H_6PMo_9V_3O_{40}$	H ₂ O ₂ /HCOOH	70	83	104
3.	[Co(BBPTZ) ₃][HPMo ₁₂ O ₄₀]·24H ₂ O	TBHP	50	99.1	105
4.	[Omim] ₃ PMo ₁₂ O ₄₀	TBHP	60	100	106
5.	$\begin{split} & [Cu^{II}(C_5H_5N)_4]_3[\{Mo^{VI}_5O_{15}(SO_4)_2\}\{Cu^{II}\\ & (C_5H_5N)_3\{DMF\}(H_2O)\}]\\ & [Mo^{VI}_5O_{15}(SO_4)_2]\bullet 2DMF \end{split}$	TBHP	60	100	This article

BBPTZ: 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl]; Omim: 1-octyl-3-methylimidazolium, TBHP: Tetrabutyl hydroperoxide

(b)

Figure S1: (a) Comparative P-XRD data for (NH₄)₂Mo₃S₁₃, and (b) EDX analysis data for (NEt₄)₂Mo₃S₇Br₆ with elemental percentage distribution shown in table.

Figure S2: Comparative simulated and experimental P-XRD of compound 1.

Figure S3: (a) Ball and stick, (b) Polyhedral, and (c) Space-filling model of interdigitated architecture of 1; (Colour code: Mo: Dark red, Cu: Turquoise, S: Yellow, O: Red, N: Blue, C: Grey, H: white).

Figure S4: Infrared spectrum of compound 1.

Figure S5: Kubelka-Munk plot of UV-DRS spectra of compound 1 showing direct band energy gap (Eg).

Figure S6: (a) Field dependence of the magnetization plotted as M vs H for 1 at 100 K. The solid lines represent the best fit. Field dependence of the magnetization as (b) M vs H (left) and, (c) M vs H/T (right) plots for 1 at 2, 5, and 6 K. The solid lines are guide for the eyes.

Figure S7: (a) Control catalysis experiment(s) without catalyst or oxidant. Bar-chart illustrating the optimization of ODS parameters with respect to **(b)** catalyst dosage, **(c)**

temperature.

Figure S8: GC-FPD chromatograms of aliquots extracted during ODS process of (a) fresh model oil, (b) desulphurized model oil, (c) fresh diesel, and (d) desulphurized diesel.

Figure S9: Bar-chart showing regeneration and reusability of compound 1 for ODS catalysis.

Figure S10: Comparative (A) P-XRD and, (B) IR spectra of compound 1 during ODS studies along multiple cycles; (a) pristine catalyst, (b) after initial cycle of oxidative desulphurization (c) after regeneration - cycle 1; (d) after regeneration - cycle 2; (e) after regeneration - cycle

3; (f) after regeneration - cycle 4; (g) after regeneration - cycle 5.

Figure S11: Proposed mechanism of catalytic ODS for DBT with compound 1 as catalyst.