Supporting Information for

A novel all-nitrogen molecular crystal N_{16} as promising highenergy density material

Lei Zhao^{1,21}, Shijie Liu^{3,41}, Yuanzheng Chen⁵, Wencai Yi⁶, Darlar Khodagholian²,

Fenglong Gu⁷, Eric Kelson², Yonghao Zheng^{8*}, Bingbing Liu^{4*}, Mao-sheng Miao^{2,9*}

¹ College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China

² Department of Chemistry & Biochemistry, California State University Northridge, Northridge, CA, 91330, United States

³ School of Physics and Engineering, and Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Henan University of Science and Technology, Luoyang 471003, P. R. China

⁴ State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P.
R. China

⁵ School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, P. R. China

⁶ School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165,P. R. China

⁷ Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China

⁸ School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China

⁹ Beijing Computational Science Research Center, Beijing, 100193, P. R. China

*Corresponding author: <u>mmiao@csun.edu; liubb@jlu.edu.cn;</u> <u>zhengyonghao@uestc.edu.cn</u>

Mode	Frequency	Infrared	Mode	Frequency	Infrared
1	41.68	0.0001	22	834.35	0.1864
2	57.49	1.3169	23	916.95	27.6215
3	57.68	1.3276	24	917.14	27.5905
4	74.12	0.2877	25	1041.28	1.4787
5	74.26	0.2769	26	1041.46	1.5181
6	91.12	1.8537	27	1045.05	1.2268
7	187.03	0.0000	28	1071.04	42.2564
8	326.10	0.3131	29	1071.21	42.1406
9	326.15	0.3138	30	1084.04	0.1509
10	363.01	0.1206	31	1125.69	0.1101
11	401.83	3.7782	32	1125.89	0.1087
12	401.90	3.7920	33	1131.49	6.3023
13	601.83	4.0438	34	1250.76	16.4274
14	649.19	0.0000	35	1251.03	16.4709
15	678.41	3.4005	36	1275.72	0.0193
16	678.43	3.4278	37	1389.00	0.5344
17	750.04	0.7745	38	1407.93	0.6561
18	750.08	0.7843	39	1408.29	0.6637
19	752.33	0.0000	40	1458.46	1.9723
20	800.03	66.7973	41	1458.66	1.9936
21	800.44	66.8810	42	1462.31	16.1381

Table S1. Harmonic vibrational analysis of N_{16} molecule.

Table S2. Geometries of $\rm NH_3$ and $\rm N_{16}$ in gas phase and $\rm N_{16}$ in solid state.

		Bond (Å)	Angle (°)	Dihedral (°)
NH ₃	2	B12 1.019	A213 105.76	D2431 40.29
Gas Phase		B13 1.019	A314 105.76	
	4	B14 1.019	A412 105.76	

N ₁₆	8	B12 1.375	A213 115.27	D2431 24.35
Gas Phase	2	B13 1.375	A314 115.28	
		B14 1.375	A412 115.27	
N ₁₆		B12 1.380	A213 114.69	D2431 25.75
Solid State		B13 1.378	A314 114.65	
	222	B14 1.378	A412 114.69	

Table S3. Structural parameters including the space groups, lattice constants, and atomic positions for predicted N_{16} and N_8 cubic crystals. Previous reported crystalline N_8 molecule is also listed for comparison.

	Space	Lattice		Wyckoff positions		
	group	parameters		wyckon positions		
N ₁₆ ^a	Cm	a = 6.79045 Å	4b	0.13958	0.87311	0.29248
		b = 11.95041 Å	4b	0.22408	0.77699	0.29251
		c = 5.21160 Å	4b	0.20641	0.74759	0.02699
		$\beta = 108.1848$	4b	0.11188	0.82580	0.86536
			4b	0.07242	0.90326	0.02966
			2a	0.96365	0.00000	0.93150
			2a	0.76449	0.00000	0.94936
			2a	0.59795	0.00000	0.72697
			2a	0.44305	0.00000	0.81987
			2a	0.51551	0.00000	0.09995
			2a	0.71547	0.00000	0.18015
N ₈ -cubic ^a	R-3	a = 6.55631 Å	18f	0.00391	0.19270	0.43283
		c = 6.61140 Å	6c	0.00000	0.00000	0.29792
N ₈ ^b	P1	a = 10.68587 Å	la	0.76023	0.18969	0.00696
		b = 4.48237 Å	la	0.64516	0.17816	0.03418
		c = 6.75541 Å	1a	0.56465	0.27353	0.86156

$\alpha = 90.9501$	1a	0.86600	0.19162	0.01120
$\beta = 83.3467$	la	0.00853	0.83059	0.47863
$\gamma = 45.6150$	1a	0.11972	0.71651	0.61687
	la	0.81238	0.86403	0.39450
	la	0.91869	0.75063	0.53785
	1a	0.40343	0.20654	0.06804
	la	0.28267	0.21933	0.06239
	1a	0.31823	0.79038	0.51711
	la	0.21811	0.76835	0.55340
	la	0.71261	0.80945	0.43763
	1a	0.61123	0.78967	0.44381
	1a	0.44330	0.28690	0.87645
	1a	0.17529	0.21887	0.07765

^a predicted in this work.

^b from reference¹.

	N ₂ (a.u.)	N ₁₆ (a.u.)	Formation Energy(eV)
Gas Phase	-109.519	-875.517	17.178
Solid State	ε-N ₂ (eV)	N ₁₆ (eV)	
0 GPa	-374.020	-111.874	12.799
20 GPa	-299.139	-92.659	7.054
40 GPa	-243.291	-77.344	3.753
60 GPa	-194.838	-63.597	1.349
80 GPa	-150.943	-50.852	-0.537
100 GPa	-110.329	-38.836	-2.059

Table S4. Formation energy of $N_{\rm 16}$ in the gas phase and solid state.

We carefully analyzed the symmetry of N_{16} molecular crystal and found that it can be assigned to either the Cm or P1 symmetry group (see the figure S1 below) depending on the symmetry operation criteria parameter. However, the structural relaxation enthalpies from imposing either symmetry group result in practically the same results. We therefore assigned the higher symmetry of Cm to this structure. Majority solid-state compounds show much higher symmetry. However, this trend can be interrupted in molecular crystals, especially for those consisting of large molecules. The Cm structure may seem to have higher symmetry as both the molecule and the lattice are highly ordered. However, the combination of the large molecule and the translational symmetry of the lattice impose a large constraint on the overall symmetry. Considering the unit cell contains only two N_{16} molecules, the translational symmetry of this molecular crystal is quite "high".

Figure S1. Structures of N_{16} molecular crystal with Cm and P1 symmetry.

Figure S2. The phonon spectra of N_{16} solid structure.

Figure S3. (a) Snapshots of the final configurations and (b) energy change for molecular dynamic simulation at 350K.

Reference

 Hirshberg, B., Gerber, R. B. & Krylov, A. I. Calculations predict a stable molecular crystal of N₈. *Nat Chem* 6, 52 (2014).