Delicate, a study of structural change in ten-coordinated La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Eu(III) sulfates

Supporting Information

Maria Storm Thomsen ^a, Thomas Just Sørensen ^a

^a Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark, tjs@chem.ku.dk, <u>mst@chem.ku.dk</u>

Contents

1.	Crystals	S2
2.	Crystallographic Information	S3
3.	Powder X-ray Diffractogram	S4
4.	Time-resolved emission decay profiles	S7
5.	Excitation spectra	S11
6.	Emission spectrum K ₅ Na[(Eu _{0.98} Nd _{0.02}) ₂ (SO ₄) ₆] – Long range	S14
7.	Gaussian fits of the ⁷ F ₁ transition band	S15
8.	AlignIt σ_{ideal} values in comparative scale of ten-vertex polyhedra	S18
9.	AlignIt σ_{ideal} values in comparative scale of ten-vertex polyhedra ^a	S19
10.	References	S20

1. Crystals

Figure S1. $K_6[Pr_2(SO_4)_6]$ crystal. The picture is taken through a microscope.

2. Crystallographic Information

The crystals $K_5Na[Ce_2(SO_4)_6]$ (ICSD: 281576) and $K_5Na[Eu_2(SO_4)_6]$ (CCDC: 2070452) were published elsewhere.^{1,2}

Empirical formula	$La_2K_6O_{24}S_6$	$Ce_2K_6O_{24}S_6$	$Pr_2K_6O_{24}S_6$	$Nd_2K_5NaO_{24}S_6$	$\mathrm{Sm}_2\mathrm{K}_5\mathrm{NaO}_{24}\mathrm{S}_6$
Formula weight	1088.78	1091.20	1092.78	1083.33	1095.55
Temperature/K	100	100	100	100	100
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C2/m	C2/m	C2/m	C2/m	C2/m
a/Å	9.2182(6)	9.1884(7)	9.168 (3)	9.1404 (6)	9.1152 (6)
b/Å	16.3683(9)	16.3639(13)	16.317 (5)	16.2841 (11)	16.1688 (10)
c/Å	7.7108(4)	7.6768(6)	7.651 (2)	7.6453 (5)	7.6393 (4)
β/°	111.243(2)	111.324(3)	111.04 (3)	110.991 (2)	110.639 (2)
Volume/Å ³	1084.40(11)	1075.25(15)	1071.4 (2)	1062.43 (12)	1053.63 (11)
Ζ	2	2	2	2	2
$\rho_{calc}g/cm^3$	3.334	3.370	3.398	3.386	3.453
µ/mm ⁻¹	5.731	6.040	6.379	6.539	7.239
F(000)	1032.0	1036.0	1040.0	1028.0	1036.0
Crystal size/mm ³	0.165 × 0.151 × 0.094	$0.196 \times 0.175 \times 0.078$	$\begin{array}{c} 0.238 \times 0.212 \times \\ 0.07 \end{array}$	0.188 × 0.096 × 0.082	$0.116 \times 0.087 \times 0.068$
Radiation	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
20 range for data collection/°	4.978 to 71.258	4.978 to 54.96	4.992 to 72.83	5.004 to 72.624	5.038 to 72.63
Index ranges	$-15 \le h \le 15, -26$ $\le k \le 26, -12 \le 1$ ≤ 12	$-11 \le h \le 9, -21$ $\le k \le 21, -9 \le l \le 9$	$-15 \le h \le 15, -27$ $\le k \le 27, -12 \le 1$ ≤ 12	$-15 \le h \le 11, -27$ $\le k \le 27, -12 \le 1$ ≤ 12	$-15 \le h \le 15, -26$ $\le k \le 25, -11 \le 1$ ≤ 12
Reflections collected	21705	13325	16671	21714	21452
Independent reflections	$2580 [R_{int} = 0.0326, R_{sigma} = 0.0181]$	$\begin{array}{l} 1277 \ [R_{int} = \\ 0.0591, R_{sigma} = \\ 0.0266] \end{array}$	$\begin{array}{l} 2678 \ [R_{int} = \\ 0.0444, \ R_{sigma} = \\ 0.0287] \end{array}$	$2653 [R_{int} = 0.0509, R_{sigma} = 0.0289]$	$2632 [R_{int} = 0.0653, R_{sigma} = 0.0347]$
Data/restraints/paramete rs	2580/0/95	1277/0/102	2678/0/102	2653/0/102	2632/0/95
Goodness-of-fit on F ²	1.144	1.135	1.122	1.099	1.096
Final R indexes [I>=2σ (I)]	$R_1 = 0.0226,$ $wR_2 = 0.0652$ $R_2 = 0.0252$	$R_1 = 0.0250,$ $wR_2 = 0.0702$ $R_2 = 0.0266$	$R_1 = 0.0233,$ $wR_2 = 0.0628$ $R_2 = 0.0265$	$R_1 = 0.0265,$ $wR_2 = 0.0650$ $R_2 = 0.0210$	$R_1 = 0.0202,$ $wR_2 = 0.0475$ $R_2 = 0.0250$
Final R indexes [all data]	$\kappa_1 = 0.0252,$ $wR_2 = 0.0664$	$K_1 = 0.0266,$ $WR_2 = 0.0708$	$\kappa_1 = 0.0265,$ $wR_2 = 0.0639$	$\kappa_1 = 0.0319,$ w $R_2 = 0.0672$	$\kappa_1 = 0.0250,$ $wR_2 = 0.0489$
Largest diff. peak/hole / e Å ⁻³	2.63/-3.36	0.84/-1.11	2.01/-2.16	5.44/-1.97	0.94/-1.29

CCDC numbers:

 $\begin{array}{l} K_6[La_2(SO_4)_6]: 2142173, K_6[Ce_2(SO_4)_6]: 2150608, K_6[Pr_2(SO_4)_6]: 2142174, K_5Na[Nd_2(SO_4)_6]: 2142177, K_5Na[Sm_2(SO_4)_6]: 2142178 \end{array}$

Figure S2. Powder X-ray diffractograms of $K_6Na[Ln_2(SO_4)_6]$ (Ln = La, Ce, Pr) and $K_5Na[Ln_2(SO_4)_6]$ (Ln = Nd, Sm)

Figure S4. . Powder X-ray diffractograms of, $K_6[(La_{0.90}Eu_{0.10})_2(SO_4)_6]$, $K_6[La_2(SO_4)_6]$, $K_6[(Ce_{0.90}Eu_{0.10})_2(SO_4)_6]$, $K_6Ce_2(SO_4)_6]$ and $K_5Na[Eu_2(SO_4)_6]$.

Figure S5. X-ray fluorescence spectrum of $K_6[(La_{0.90}Eu_{0.10})_2(SO_4)_6]$, $K_6[(Ce_{0.90}Eu_{0.10})_2(SO_4)_6]$, and $K_5Na[Eu_2(SO_4)_6]$ powders.

5. Time-resolved emission decay profiles

Figure S6. Time resolved decay profiles of $K_5Na[(Eu_{0.97}La_{0.03})_2(SO_4)_6]$ and $K_5Na[(Eu_{0.97}Ce_{0.03})_2(SO_4)_6]$ powders recorded in dimethyl tetrahydrofuran glass at 77K.

Figure S7. Time resolved decay profiles of $K_6[(La_{0.90}Eu_{0.10})_2(SO_4)_6]$ and $K_6[(Ce_{0.90}Eu_{0.10})_2(SO_4)_6]$ powders recorded in dimethyl tetrahydrofuran glass at 77K.

Figure S8. Time resolved decay profiles of $K_5Na[(Eu_{0.98}Nd_{0.02})_2(SO_4)_6]$ powders recorded in dimethyl tetrahydrofuran glass at 77K.

Time / µs

Figure S9. Time resolved decay profiles of $K_5Na[(Sm_{0.90}Eu_{0.10})_2(SO_4)_6]$, $K_5Na[(Pr_{0.90}Eu_{0.10})_2(SO_4)_6]$ and $K_5Na[(Nd_{0.90}Eu_{0.10})_2(SO_4)_6]$ powders recorded in dimethyl tetrahydrofuran glass at 77K.

6. Excitation spectra

Figure S10. Normalized excitation spectra (em. 614 nm) of $K_5Na[(Eu_{0.97}La_{0.03})_2(SO_4)_6]$ K₅Na[$(Eu_{0.97}Ce_{0.03})_2(SO_4)_6$] and K₅Na[Eu₂(SO₄)₆] powders in dimethyl tetrahydrofuran glass at 77K. Excitation slit = 1, 1.5, 1 nm.

Figure S11. Normalized excitation spectra (em. 614 nm) of $K_6[(La_{0.90}Eu_{0.10})_2(SO_4)_6]$ $K_6[(Ce_{0.90}Eu_{0.10})_2(SO_4)_6]$ and $K_5Na[Eu_2(SO_4)_6]$ powders in dimethyl tetrahydrofuran glass at 77K. Excitation slit = 1, 1.5, 1 nm.

Figure S12. Normalized excitation spectra (em. 614 nm) of $K_5Na[(Eu_{0.98}Nd_{0.02})_2(SO_4)_6]$ powders in dimethyl tetrahydrofuran glass at 77K. Excitation slit = 1, 1.5, 1 nm.

7. Emission spectrum K₅Na[(Eu_{0.98}Nd_{0.02})₂(SO₄)₆] – Long range

Figure S13. Emission spectrum $K_5Na[(Eu_{0.98}Nd_{0.02})_2(SO_4)_6]$ powder in dimethyl tetrahydrofuran glass at 77K. Excitation slit = 1.0 nm.

8. Gaussian fits of the ${}^{7}F_{1}$ transition band

Figure S14. Gaussian fits of the ${}^{7}F_{1}$ transition band in K₅Na[(Eu)₂(SO₄)₆].

Figure S15. Gaussian fits of the ${}^{7}F_{1}$ transition band in K₆[(Ce_{0.90}Eu_{0.10})₂(SO₄)₆].

Figure S16. Gaussian fits of the ${}^{7}F_{1}$ transition band in K₆[(La_{0.90}Eu_{0.10})₂(SO₄)₆].

9. AlignIt σ_{ideal} values in comparative scale of ten-vertex polyhedra AlignIt is available for download at:

https://github.com/AndyNano/AlignIt.git

Table 1. Full comparative symmetry deviations σ_{ideal} for idealized ten-vertex polyhedra^{a,b}

X\Z bcSAP	bcSAP D _{4d} 0	bcDod D ₂ 2.31	SDod D ₂ 7.93	PP D _{5h} 16.45	PAP D _{5d} 14.87	OBPy <i>D</i> _{8h} 16.14
bcDod	2.31	0	10.48	14.95	8.62	14.26
SDod	7.93	10.48	0	10.76	13.97	24.17
РР	16.45	14.96	10.76	0	6.55	22.22
PAP	14.87	8.62	13.97	6.55	0	15.87
OBPy	16.14	14.26	24.17	22.22	15.88	0

^a Coordinates for the SDod model are reported by Ruiz-Martínez *et al.*³. Coordinates for bcSAP, bcDod, PP, PAP and OBPy were created in Mercury (bcSAP and bcDod from description by Al-Karaghouli *et al.*^{4,5}). ^{*b*} Values in bold are calculated with AlignIt, and values in parenthesis are calculated using SHAPE by Lluenell *et al.*⁶

Calculated $\sigma_{ideal}(Z - X)$ values are above the diagonal and $\sigma_{ideal}(X - Z)$ are below the diagonal.

Size ratio	La(O) ₁₀ 1.0315	Ce(O) ₁₀ 1.0278	Pr(O) ₁₀ 1.0202	Nd(O) ₁₀ 1.0144	Sm(O) ₁₀ 1.0039	Eu(O) ₁₀ 1.0000		
Models	σ _{ideal} (model - Ln(O) ₁₀)							
	1.64 1.63	1.68 1.66	1.45 1.44	1.40 1.39	1.22 1.21	1.15		
	3.77 3.81	3.84 3.86	5.85 5.86	3.57 3.61	3.41 3.46	5.29		
bcDod	10.11 10.19	10.40 10.54	7.70 7.90	9.93 10.11	9.65 9.86	7.58		
SDod Ln series	SDod Ln series σ _{ideal} (Ln'(Ο) ₄₀ – Ln(Ο) ₄₀)							
1	0	0.01	3.71	0.02	0.06	3.28		
La(O) ₁₀	0.01	0	3.77	0.02	0.07	3.31		
Ce(O) ₁₀								
Pr(O) ₁₀	3.72	3.78	0	3.41	3.14	0.04		
A	0.02	0.022	3.41	0	0.02	2.97		
Nd(O) ₁₀	0.06	0.07	3.15	0.018	0	2.72		
Sm(O) ₁₀	3.29	3.34	0.045	3.00	2.74	0		

 $\begin{array}{l} \textbf{10.AlignIt} \ \sigma_{ideal} \ values \ in \ comparative \ scale \ of \ ten-vertex \ polyhedra^{a} \\ \textbf{Table S2} \ \sigma_{ideal} \ values \ calculated \ with \ AlignIt \ with \ two \ decimal \ points \end{array}$

11. References

- (1) Eriksson, A. K.; Casari, B. M.; Langer, V. Pentapotassium sodium hexasulfatodicerate(III). *Acta Crystallographica Section E* **2003**, *59* (11), i149.
- (2) Thomsen, M. S.; Anker, A. S.; Kacenaukaite, L.; Sørensen, T. J. We are Never Ever Getting (back to) Ideal Symmetry: Structure and Luminescence in a Ten-Coordinated Europium(III) Sulfate Crystal *Submitted* **2022**.
- (3) Ruiz-Martínez, A.; Alvarez, S. Stereochemistry of Compounds with Coordination Number Ten. *Chemistry – A European Journal* **2009**, *15* (30), 7470.
- (4) Al-Karaghouli, A. R.; Wood, J. S. Crystal and molecular structure of trinitratobis(bipyridyl)lanthanum(III). *Inorganic Chemistry* 1972, *11* (10), 2293.
- Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.;
 Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.et al.
 Mercury 4.0: from visualization to analysis, design and prediction. *Journal* of Applied Crystallography 2020, 53 (1), 226.
- (6) Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, version 2.1. *Universitat de Barcelona, Barcelona, Spain* **2013**, *2103*.