Slow magnetic relaxation in dinuclear Co(III)-Co(II) complexes containing a five-coordinated Co(II) centre with easy-axis anisotropy

Mengyao Liu,^a Yimou Yang,^a Rong Jing,^a Shaojun Zheng,^a Aihua Yuan,^a Zhenxing Wang,^{*b} Shu-Chang Luo,^{*c} Xiangyu Liu,^{*d} Hui-Hui Cui,^e Zhong-Wen Ouyang^b and Lei Chen^{*a}

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.

^bWuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

^cSchool of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, P. R. China.

^dState Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.

^eSchool of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China

Electronic Supplementary Information

Figure S1. The powder X-ray diffraction pattern of 1 at room temperature.

Figure S2. The powder X-ray diffraction pattern of 2 at room temperature.

	1	2
Molecular formula	$C_{37}H_{53}Co_2N_{12}O_6$	$C_{85}H_{108}Cl_2Co_4N_{24}O_8$
CCDC no	2156157	2156158
Formula weight	879.77	1900.57
Temperature / K	173(2)	173(2)
Wavelength / Å	0.71073	0.71073
crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> / Å	10.9935(17)	13.743(2)
<i>b</i> / Å	11.9446(18)	18.029(3)
<i>c</i> / Å	17.140(2)	20.727(3)
α / \deg	70.849(5)	69.604(5)
β / deg	86.836(5)	84.300(5)
γ/deg	71.907(5)	81.659(6)
V / Å ³	2018.3(5)	4756.1(13)
Z	2	2
D_{calc} , g/cm ³	1.448	1.327
μ / mm ⁻¹	0.883	0.806
F (000)	922	1984
Goodness-of-fit on F^2	0.978	1.066
Final <i>R</i> indices [<i>I</i>	$R_1 = 0.0737,$	$R_1 = 0.0859,$
$> 2\sigma(I)$] ^a	$wR_2 = 0.1837$	$wR_2 = 0.2391$
R indices (all data) ^a	$R_1 = 0.1063,$	$R_1 = 0.1435,$
	$wR_2 = 0.2069$	$wR_2 = 0.2672$

 Table S1. Crystal data and structure refinements for 1 and 2.

 ${}^{a}wR_{2} = [\Sigma[w(F_{o}{}^{2}\!-\!F_{c}{}^{2})^{2}]/\Sigma[w(Fo^{2})^{2}]]^{1/2}, R_{1} = \Sigma||F_{o}|\!-\!|F_{c}||/\Sigma|F_{o}|.$

 Selected bond lengths (Å) and angles (deg) for 1.

(Co(III)	С	o(II)	
Co(1)-N(1)	1.918(4)	Co(2)-O(3)	1.974(3)	
Co(1)-N(2)	1.934(4)	Co(2)-O(4)	2.637(3)	
Co(1)-N(3)	1.905(4)	Co(2)-N(5)	2.008(4)	
Co(1)-N(4)	1.902(4)	Co(2)-N(6)	2.005(4)	
Co(1)-N(9)	1.955(4)	Co(2)-N(7)	2.024(5)	
Co(1)-N(11)	2.007(4)			
N(1)-Co(1)-N(2)	96.69(16)	N(6)-Co(2)-N(5)	103.12(15)	
N(3)-Co(1)-N(1)	81.98(16)	N(5)-Co(2)-N(7)	105.61(17)	
N(3)-Co(1)-N(4)	99.28(16)	N(6)-Co(2)-N(7)	103.98(17)	
N(4)-Co(1)-N(2)	82.04(16)	O(3)-Co(2)-N(5)	124.94(15)	
N(9)-Co(1)-N(11)	177.75(15)	O(3)-Co(2)-N(6)	116.82(15)	
		O(3)-Co(2)-N(7)	99.95(16)	

 Table S3. Selected bond lengths (Å) and angles (deg) for 2.

	Co	p(III)				Co(II)	
Co(1)-N(1)	1.908(5)	Co(3)-N(13)	1.916(5)	Co(2)-O(3)	1.956(5)	Co(4)-O(7)	1.946 (8)
Co(1)-N(2)	1.927(4)	Co(3)-N(14)	1.926(5)	Co(2)-O(4)	2.581(9)	Co(4)-O(8)	2.692(13)
Co(1)-N(3)	1.916(5)	Co(3)-N(15)	1.906(5)	Co(2)-N(4)	2.016(5)	Co(4)-N(16)	1.973(6)
Co(1)-N(5)	1.903(5)	Co(3)-N(17)	1.916(5)	Co(2)-N(6)	2.021(5)	Co(4)-N(18)	2.015(6)
Co(1)-N(7)	1.969(5)	Co(3)-N(19)	1.971(5)	Co(2)-N(11)	2.014(5)	Co(4)-N(23)	2.034(6)
Co(1)-N(9)	1.985(5)	Co(3)-N(21)	2.016(5)				
N(1)-Co(1)-N(2)	95.8(2)	N(13)-Co(3)-N(14)	96.5(2)	N(11)-Co(2)-N(4)	105.6(2)	N(16)-Co(4)-N(18)	103.9(4)
N(1)-Co(1)-N(3)	81.9(2)	N(15)-Co(3)-N(13)	81.5(2)	N(11)-Co(2)-N(6)	105.7(2)	N(16)-Co(4)-N(23)	102.9(4)
N(5)-Co(1)-N(3)	100.3(2)	N(15)-Co(3)-N(17)	99.4(2)	N(4)-Co(2)-N(6)	104.0(2)	N(18)-Co(4)-N(23)	107.7(4)
N(5)-Co(1)-N(2)	81.9(2)	N(17)-Co(3)-N(14)	82.7(2)	O(3)-Co(2)-N(4)	117.3(2)	O(7)-Co(4)-N(16)	119.6(5)
N(7)-Co(1)-N(9)	178.9(2)	N(19)-Co(3)-N(21)	178.9(2)	O(3)-Co(2)-N(6)	123.6(2)	O(7)-Co(4)-N(18)	119.3(5)
				O(3)-Co(2)-N(11)	98.6(2)	O(7)-Co(4)-N(23)	101.8(3)

Table S4. Continuous shape measure (CShM) analyses for 1 and 2. The lowest CShM value is highlighted.

Ideal Polyhedron	1	,	2
	Co2	Co2	Co4
Pentagon (D_{5h})	30.047	30.542	30.409
Vacant octahedron (C_{4v})	7.261	6.868	7.763
Trigonal bipyramid (D_{3h})	4.951	4.566	5.749
Spherical square pyramid (C_{4v})	6.004	5.256	5.697
Johnson trigonal bipyramid J12 (D _{3h})	5.124	5.013	5.542

Figure S3. The packing diagram for complex 1 gives the shortest Co(II)...Co(II) distance of 7.646 Å.

Figure S4. The packing diagram for complex 2 gives the shortest Co(II)…Co(II) distance of 8.394 Å.

Figure S5. The HFEPR spectra of 1 at 2 K.

Figure S6. The HFEPR spectra of 2 at 2 K.

Table S5. Calculated values of **D**, **E**, and **g** for **1** and **2** usingORCA/CASSCF+NEVPT2.

Complex	D (cm ⁻¹)	<i>E</i> (cm ⁻¹)	$g_{ m iso}$	g_{x}	$oldsymbol{g}_{\mathrm{y}}$	gz
1	-24.64	-0.72	2.2607	2.1536	2.1722	2.4564
2-Co2	-20.37	-0.62	2.2498	2.1588	2.1766	2.4139
2-Co4	-15.70	-1.90	2.2485	2.1610	2.2088	2.3757

Figure S7. The theoretical (solid line) curves of magnetic susceptibilities of 1.

Figure S8. The theoretical (solid line) curves of magnetic susceptibilities of 2.

		1	12 . 0114		150.		2 (- 2		
		1					2-002		
KDs	E/cm^{-1}	g_x	gy	gz	KDs	E/cm^{-1}	g_x	gy	gz
1	0.000	0.1866	0.1934	7.3444	1	0.000	0.1941	0.1980	7.2196
2	49.337	4.4860	4.1431	2.4749	2	40.797	4.5030	4.1455	2.4260
3	2522.007	4.6964	4.0604	1.5253	3	2823.737	4.5871	4.1819	1.5733
4	2642.787	0.2592	0.2753	4.6923	4	2937.620	0.1615	0.1788	4.8037
				2	-Co4				
K	Ds	E/c	m ⁻¹		g _x	g	y	g	z
	1	0.0	000	0	.7233	0.82	273	7.01	115
	2	32.	077	2	.2884	3.57	794	5.03	365
	3	3003	.018	5	.2138	3.60)91	1.58	357
	4	3111	.435	0	.6715	0.72	226	4.93	337

Table S6. Calculated energy levels (cm^{-1}) and $g(g_x, g_y, g_z)$ tensors of the lowest Kramers doublets (KDs) of the Co^{II} for 1 and 2 using ORCA/CASSCF+NEVPT2+SINGLE ANISO.

Table S7. Individual contributions to *D*-tensor for 1 and 2 calculated usingCASSCF/NEVPT2/ZORA-def2-TZVP(-f).

1		2-Co2		2-Co4			
2 <i>S</i> +1	Root	D	E	D	E	D	E
4	0	0.000	0.000	0.000	0.000	0.000	0.000
4	1	-39.537	0.046	-36.465	0.008	-31.358	-0.326
4	2	5.451	-6.004	7.300	-7.372	7.137	-7.790
4	3	5.244	6.538	5.747	5.611	4.024	2.544
4	4	2.922	-1.266	1.669	0.966	3.726	3.382
4	5	-0.283	-0.013	-0.212	0.002	-0.381	-0.037
4	6	0.111	-0.072	0.122	0.016	0.112	0.023
4	7	0.016	-0.011	0.012	0.000	0.018	-0.003
4	8	0.001	-0.001	0.001	0.000	-0.001	-0.000
4	9	-0.019	-0.000	-0.015	0.000	-0.025	0.001
2	0	-0.433	0.763	-0.491	0.561	-0.444	0.322
2	1	0.131	-0.555	0.161	-0.399	0.250	-0.259
2	2	0.388	-0.022	0.445	-0.012	0.494	-0.013
2	3	0.103	-0.001	0.025	0.002	0.023	-0.001
2	4	-0.005	0.007	0.044	0.004	0.038	-0.000
2	5	0.142	-0.010	0.047	0.017	0.121	0.006
2	6	4.349	-0.027	4.919	-0.030	4.412	0.041
2	7	-1.714	1.582	-1.924	0.417	-1.830	1.033
2	8	-2.232	-2.043	-2.261	-0.395	-2.301	-0.997
2	9	-0.258	0.368	-0.275	0.063	-0.258	0.081
2	10	0.685	-0.005	0.659	-0.021	0.385	0.044
2	11	0.104	0.013	0.218	-0.028	0.236	-0.034

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	12	0.317	0.003	0.181	-0.000	0.413	-0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	13	-0.067	0.025	-0.015	0.005	-0.104	0.080
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	14	-0.085	-0.047	-0.094	-0.056	-0.059	-0.051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	15	0.002	-0.008	-0.122	0.062	-0.041	0.039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	16	-0.253	0.193	-0.112	0.055	-0.236	0.081
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	17	0.142	-0.001	0.101	0.000	-0.002	0.018
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	18	-0.014	-0.017	0.038	-0.002	0.119	-0.016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	19	0.049	-0.023	-0.014	-0.012	0.055	-0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	20	0.010	-0.002	0.003	-0.006	-0.051	-0.034
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	21	-0.006	-0.027	0.021	-0.004	0.080	-0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	22	-0.741	0.698	-0.754	-0.382	-0.793	-0.767
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	23	-0.687	-0.660	-0.634	0.282	-0.406	0.397
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	24	-0.014	0.011	-0.026	0.004	-0.076	0.092
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	25	0.350	-0.005	0.352	-0.007	0.418	0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	26	-0.002	-0.002	-0.001	-0.000	-0.001	0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	27	-0.006	0.002	-0.003	0.000	-0.003	-0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	28	-0.007	0.005	-0.003	0.002	-0.006	0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	29	0.304	0.001	0.301	-0.002	0.260	0.019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	30	-0.093	0.091	-0.104	0.089	-0.055	0.019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	31	-0.089	-0.087	-0.097	-0.078	-0.096	-0.024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	32	-0.010	-0.008	-0.007	-0.002	-0.010	-0.008
2 34 0.000 0.001 0.000 -0.000 -0.000 -0.000 2 35 -0.000 -0.001 0.000 -0.000 0.000 0.000 2 36 -0.015 -0.014 -0.014 -0.016 -0.004 2 37 -0.007 0.008 -0.005 0.005 -0.006 -0.002 2 38 -0.008 0.003 -0.014 0.007 -0.016 0.008 2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	33	-0.011	0.013	-0.009	0.005	-0.012	0.006
2 35 -0.000 -0.001 0.000 -0.000 0.000 0.000 2 36 -0.015 -0.014 -0.014 -0.016 -0.004 2 37 -0.007 0.008 -0.005 0.005 -0.006 -0.002 2 38 -0.008 0.003 -0.014 0.007 -0.016 0.008 2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	34	0.000	0.001	0.000	-0.000	-0.000	-0.000
2 36 -0.015 -0.014 -0.014 -0.016 -0.004 2 37 -0.007 0.008 -0.005 0.005 -0.006 -0.002 2 38 -0.008 0.003 -0.014 0.007 -0.016 0.008 2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	35	-0.000	-0.001	0.000	-0.000	0.000	0.000
2 37 -0.007 0.008 -0.005 0.005 -0.006 -0.002 2 38 -0.008 0.003 -0.014 0.007 -0.016 0.008 2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	36	-0.015	-0.015	-0.014	-0.014	-0.016	-0.004
2 38 -0.008 0.003 -0.014 0.007 -0.016 0.008 2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	37	-0.007	0.008	-0.005	0.005	-0.006	-0.002
2 39 0.027 0.006 0.035 0.004 0.037 -0.002	2	38	-0.008	0.003	-0.014	0.007	-0.016	0.008
	2	39	0.027	0.006	0.035	0.004	0.037	-0.002

 Table S8. Energy levels (cm⁻¹) of ligand field multiplets for 1 and 2 calculated using CASSCF/ZORA-def2-TZVP(-f) in magnetic zero field.

	I	2-Co2	2-Co4
States	Energy levels (cm ⁻¹)	Energy levels (cm ⁻¹)	Energy levels (cm ⁻¹)
1	0.0	0.0	0.0
2	49.3	40.8	32.1
3	49.3	40.8	32.1
4	2522.0	2823.7	3003.0
5	2522.0	2823.7	3003.0
6	2642.8	2937.6	3111.4
7	2642.8	2937.6	3111.4
8	6136.7	6347.9	5512.0
9	6136.7	6347.9	5512.0
10	6293.0	6516.0	5652.6
11	6293.0	6516.0	5652.6

12	7281.2	7165.5	6818.3
13	7281.2	7165.5	6818.3
14	7375.1	7291.7	6955.8
15	7375.1	7291.7	6955.8
16	7964.3	8245.5	7941.1
17	7964.3	8245.5	7941.1
18	8052.6	8343.3	8034.2
19	8052.6	8343.3	8034.2
20	9553.8	9548.2	9717.7
21	9553.8	9548.2	9717.7
22	9665.7	9671.2	9833.3
23	9665.7	9671.2	9833.3
24	13158.8	12724.5	12919.5
25	13158.8	12724.5	12919.5
26	13180.0	12750.2	12947.9
27	13180.0	12750.2	12947.9
28	15991.0	16474.4	15852.4
29	15991.0	16474.4	15852.4
30	16825.1	17222.0	17176.5
31	16825.1	17222.0	17176.5
32	18584.8	18658.7	18413.3
33	18584.8	18658.7	18413.3
34	18883.8	18893.7	18813.6
35	18883.8	18893.7	18813.6
36	19577.0	19410.3	19571.5
37	19577.0	19410.3	19571.5
38	20472.5	20632.0	20659.6
39	20472.5	20632.0	20659.6
40	20788.8	21067.5	20908.8
41	20788.8	21067.5	20908.8
42	20837.7	21121.5	20955.5
43	20837.7	21121.5	20955.5
44	21150.6	21298.1	21192.4
45	21150.6	21298.1	21192.4
46	21718.9	21491.1	21292.1
47	21718.9	21491.1	21292.1
48	21810.0	21612.1	21389.4
49	21810.0	21612.1	21389.4
50	22398.8	22253.8	22409.6
51	22398.8	22253.8	22409.6
52	22595.8	22436.0	22576.6
53	22595.8	22436.0	22576.6
54	22907.1	23210.1	22752.8
55	22907.1	23210.1	22752.8

56	23819.6	23930.4	23879.4
57	23819.6	23930.4	23879.4
58	24230.6	24235.0	23997.9
59	24230.6	24235.0	23997.9
60	24615.2	24662.6	24513.4
61	24615.2	24662.6	24513.4
62	25134.8	25272.8	25005.0
63	25134.8	25272.8	25005.0
64	26603.1	26516.8	26206.9
65	26603.1	26516.8	26206.9
66	26917.9	26706.0	26732.9
67	26917.9	26706.0	26732.9
68	27281.4	27157.9	27578.0
69	27281.4	27157.9	27578.0
70	28017.9	27839.4	27912.7
71	28017.9	27839.4	27912.7
72	28214.1	28229.1	28162.1
73	28214.1	28229.1	28162.1
74	29390.2	29357.2	29584.7
75	29390.2	29357.2	29584.7
76	29886.1	29638.8	29876.0
77	29886.1	29638.8	29876.0
78	30496.0	30512.5	30129.3
79	30496.0	30512.5	30129.3
80	31010.0	30823.9	30829.0
81	31010.0	30823.9	30829.0
82	31239.3	31154.9	31054.4
83	31239.3	31154.9	31054.4
84	31442.3	31401.8	31485.8
85	31442.3	31401.8	31485.8
86	32048.7	31936.6	32269.5
87	32048.7	31936.6	32269.5
88	33992.5	33786.9	33443.3
89	33992.5	33786.9	33443.3
90	34774.5	34636.1	33865.4
91	34774.5	34636.1	33865.4
92	35409.7	35459.4	35426.4
93	35409.7	35459.4	35426.4
94	36585.2	36685.2	36156.7
95	36585.2	36685.2	36156.7
96	41060.2	40942.4	41016.7
97	41060.2	40942.4	41016.7
98	41521.9	41427.5	41377.5
99	41521.9	41427.5	41377.5

100	42177.5	42043.4	42007.1
101	42177.5	42043.4	42007.1
102	42678.8	42576.6	42571.6
103	42678.8	42576.6	42571.6
104	43331.1	43363.0	43284.2
105	43331.1	43363.0	43284.2
106	43716.6	43660.3	43723.1
107	43716.6	43660.3	43723.1
108	44683.4	44597.7	44343.7
109	44683.4	44597.7	44343.7
110	61163.3	61006.6	60999.7
111	61163.3	61006.6	60999.7
112	62749.1	62737.3	62600.0
113	62749.1	62737.3	62600.0
114	63128.3	63014.2	63077.5
115	63128.3	63014.2	63077.5
116	63987.8	63808.6	63583.6
117	63987.8	63808.6	63583.6
118	64505.1	64221.9	64463.5
119	64505.1	64221.9	64463.5

Figure S9. Frequency dependence of out-of-phase (χ_M) ac susceptibility at 2.0 K under the different applied fields from 0 to 2000 Oe for **1**. The solid lines are for eye guide.

Figure S10. Frequency dependence of out-of-phase (χ_M) ac susceptibility at 2.0 K under the different applied fields from 0 to 2000 Oe for **2**. The solid lines are for eye guide.

Figure S11. Temperature dependence of out-of-phase (χ_M) ac susceptibility u under the 1000 Oe applied field for **1**. The solid lines are for eye guide.

Figure S12. Temperature dependence of out-of-phase (χ_M) ac susceptibility under under the 1000 Oe applied field for **2**. The solid lines are for eye guide.

Figure S13. Cole-Cole plot obtained from the ac susceptibility data under the 1000 Oe applied field in the temperature range of 2.0-4.6 K for 1.

Figure S14. Cole-Cole plot obtained from the ac susceptibility data under the 1000 Oe applied field in the temperature range of 2.0-2.8 K for **2**.

applied field for	1.				
T / K	χs	$\chi_{ m T}$	τ	a	
2.0	0.045	0.90	0.14	0.40	
2.2	0.047	0.74	0.057	0.34	
2.4	0.046	0.68	0.035	0.34	
2.6	0.046	0.63	0.022	0.32	
2.8	0.051	0.56	0.013	0.25	
3.0	0.055	0.51	0.0075	0.18	
3.2	0.055	0.48	0.0041	0.13	
3.4	0.054	0.44	0.0021	0.08	
3.6	0.053	0.42	0.0010	0.05	
3.8	0.053	0.40	0.00050	0.09	
4.0	0.055	0.38	0.00025	0.02	
4.2	0.058	0.36	0.00013	0.01	
4.4	0.036	0.35	0.000063	0.02	
4.6	0	0.33	0.000030	0.02	

Table S9. The parameters obtained by fitting Cole-Cole plot under the 1000 Oe applied field for 1.

Table S10. The parameters	obtained 1	by fitting	Cole-Cole	plot une	der the	1000	Oe
applied field for 2 .							

11				
T / K	χs	χт	τ	a
2.0	0.12	0.90	0.00049	0.14
2.2	0.097	0.83	0.00020	0.14
2.4	0.047	0.77	0.000076	0.15
2.6	0	0.71	0.000030	0.17
2.8	0	0.67	0.000013	0.23

Figure S15. Relaxation time of the magnetization $ln(\tau)$ vs T^{-1} plot under the 1000 Oe applied field for 1. The red line is the best fit to the relaxation time by the combination of Orbach and Raman processes. The blue and blue lines are representations for the Orbach and Raman processes, respectively.