Supporting Information

Synthesis and characterization of Pd/NHC_F complexes with fluorinated aryl groups

Darya O. Prima[§], Roman O. Pankov[§], Alexander Yu. Kostyukovich,[§] Mikhail E. Minyaev[§], Julia V. Burykina[§], Valentine P. Ananikov^{§*}

§ Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia;

*e-mail: val@ioc.ac.ru; http://AnanikovLab.ru

Contents

NMR spectra of the obtained compounds	2
ESI-HRMS and ESI-UHRMS spectra of the obtained compounds	2
X-ray crystallographic data and refinement details	20
The structure of 3c	23
The structure of 4a	25
The structure of 4b	
The structure of 4c	

Figure S1. ¹H NMR spectrum of **3a**. Solvent: DMSO-*d*₆, 300 MHz.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of **3a**. Solvent: DMSO- d_6 , 75 MHz.

Figure S3. ¹⁹F{¹H} NMR spectrum of **3a**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S4. ¹H NMR spectrum of **3b**. Solvent: DMSO-*d*₆, 300 MHz.

Figure S6. ¹⁹F{¹H} NMR spectrum of **3b**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of **3c**. Solvent: DMSO- d_6 , 75 MHz.

Figure S9. ¹⁹F{¹H} NMR spectrum of **3c**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S10. ¹H NMR spectrum of 3d. Solvent: DMSO-*d*₆, 300 MHz.

Figure S12. ¹⁹F{¹H} NMR spectrum of **3d**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of **4a**. Solvent: CDCl₃, 75 MHz.

Figure S15. ¹⁹F{¹H} NMR spectrum of **4a**. Solvent: CDCl₃, 282.4 MHz. Standard: C_6F_6 with respect to CFCl₃.

Figure S16. ¹H NMR spectrum of 4b. Solvent: CDCl₃, 300 MHz.

Figure S18. ${}^{19}F{}^{1}H$ NMR spectrum of **4b**. Solvent: CDCl₃, 282.4MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S19. ¹H NMR spectrum of 4c. Solvent: CDCl₃, 300 MHz.

Figure S20. ¹³C{¹H} NMR spectrum of 4c. Solvent: CDCl₃, 75 MHz.

Figure S21. ¹⁹ $F{^{1}H}$ NMR spectrum of **4c**. Solvent: CDCl₃, 282.4 MHz. Standard: C₆ F_6 with respect to CFCl₃.

Figure S22. ¹H NMR spectrum of 4d. Solvent: CDCl₃, 300 MHz.

Figure S24. ¹⁹F{¹H} NMR spectrum of **4d**. Solvent: CDCl₃, 282.4 MHz.. Standard: C_6F_6 with respect to CFCl₃.

ESI-HRMS and ESI-UHRMS spectra of the obtained compounds.

Figure S25. Experimental and theoretical ESI-(+)HRMS spectrum of **2a** in CH₃CN solution: experimental peak $[M+H]^+ = 245.0891$ Da, calculated for C₁₄H₁₁F₂N₂ = 245.0885, $\Delta = 2.4$ ppm.

Figure S26. Experimental and theoretical ESI-(+)HRMS spectrum of **2b** in CH₃CN solution: experimental peak $[M+H]^+ = 245.0894$ Da, calculated for $C_{14}H_{11}F_2N_2 = 245.0885$, $\Delta = 3.7$ ppm.

Figure S27. Experimental and theoretical ESI-(+)HRMS spectrum of **2c** in CH₃CN solution: experimental peak $[M+H]^+ = 281.0700$ Da, calculated for $C_{14}H_9F_4N_2 = 281.0696$, $\Delta = 1.4$ ppm.

Figure S28. Experimental and theoretical ESI-(+)HRMS spectrum of **2d** in CH₃CN solution: experimental peak $[M+H]^+ = 377.0725$ Da, calculated for $C_{16}H_{11}F_6N_2O_2 = 377.0719$, $\Delta = 1.6$ ppm.

Figure S29. Experimental and theoretical ESI-(+)HRMS spectrum of **3a** in CH₃CN solution: experimental peak $[M]^+ = 257.0885$ Da, calculated for $C_{15}H_{11}F_2N_2 = 257.0885$, $\Delta = 0.0$ ppm.

Figure S30. Experimental and theoretical ESI-(+)UHRMS spectrum of **3b** in CH₃CN solution: experimental peak $[M]^+ = 257.08857$ Da, calculated for $C_{15}H_{11}F_2N_2 = 257.08848$, $\Delta = 0.4$ ppm.

Figure S31. Experimental and theoretical ESI-(+)UHRMS spectrum of **3c** in CH₃CN solution: experimental peak $[M]^+$ = 293.06970 Da, calculated for C₁₅H₉F₄N₂ = 293.06964, Δ = 0.2 ppm.

Figure S32. Experimental and theoretical ESI-(+)UHRMS spectrum of **3d** in CH₃CN solution: experimental peak $[M]^+$ = 389.07210 Da, calculated for $C_{17}H_{11}F_6N_2O_2$ = 389.07192, Δ = 0.5 ppm.

Figure S33. Experimental and theoretical ESI-(+)HRMS spectrum of **4a** in CH₃CN solution: experimental peak $[M]^+ = 477.9943$ Da, calculated for C₂₀H₁₅F₂ClN₃Pd = 477.9955, $\Delta = 2.5$ ppm.

Figure S34. Experimental and theoretical ESI-(+)HRMS spectrum of **4b** in CH₃CN solution: experimental peak $[M]^+ = 477.9954$ Da, calculated for C₂₀H₁₅F₂ClN₃Pd = 477.9955, $\Delta = 0.2$ ppm.

Figure S35. Experimental and theoretical ESI-(+)HRMS spectrum of **4c** in CH₃CN solution: experimental peak $[M]^+ = 513.9772$ Da, calculated for $C_{20}H_{13}F_4ClN_3Pd = 513.9766$, $\Delta = 1.2$ ppm.

Figure S36. Experimental and theoretical ESI-(+)HRMS spectrum of **4d** in CH₃CN solution: experimental peak $[M]^+$ = 609.9784 Da, calculated for C₂₂H₁₅F₆ClN₃O₂Pd = 609.9789, Δ = 0.8 ppm.

X-ray crystallographic data and refinement details

X-ray diffraction data for **3c**, **4a1**, **4a2**, **4b** and **4c** were collected at 100 K on a Rigaku Synergy S diffractometer equipped with a HyPix6000HE area detector (kappa geometry, shutterless ω -scan technique) using monochromatized Cu K_{α} (**3c**) or Mo K_{α} (**4a1**, **4a2**, **4b** and **4c**) radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ All structures were solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ In models **4a1**, **4a2** and **4c**, the positions of all atoms were found from the electron density-difference map; atoms were refined with individual anisotropic (nonhydrogen atoms) or isotropic (hydrogen atoms) displacement parameters. In **2a**, **3c** and highly disordered **4b**, hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The XP program of the SHELXTL program suite⁵ and the Mercury program⁶ were used for molecular graphics herein and in the article, respectively.

References:

- 1. CrysAlisPro. Version 1.171.41.106a. Rigaku Oxford Diffraction, 2021.
- Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, A71, 3-8. http://doi.org/10.1107/S2053273314026370
- 3. Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst.* **2015**, C71, 3-8. http://doi.org/10.1107/S2053229614024218
- Dolomanov O.V.; Bourhis L.J.; Gildea R.J.; Howard J.A.K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, 42, 229-341. http://doi.org/10.1107/S0021889808042726
- 5. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. *J. Appl. Cryst.* 2020, **53**, 226-235. https://doi.org/10.1107/S1600576719014092

Identification code	3c	4 a1	4a2	4b	$4c \cdot 1/2CH_2Cl_2$
Empirical formula	$C_{15}H_9ClF_4N_2$	$C_{20}H_{15}Cl_2F_2N_3Pd$	$C_{20}H_{15}Cl_2F_2N_3Pd$	$C_{20}H_{17}Cl_2F_2N_3Pd$	$C_{20.5}H_{14}Cl_3F_4N_3Pd$
Formula weight	328.69	512.65	512.65	514.66	591.10
Temperature (K)	100.0(1)	100.0(1)	100.0(1)	100.0(1)	100.0(1)
Wavelength (Å)	1.54184	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic
Space group	$\mathbf{P}_{\overline{1}}$	Pbca	$P2_1/c$	C2/m	Pbcn
Unit cell dimensions					
a (Å)	6.44484(8)	11.2541(2)	9.4450(2)	6.9092(3)	22.7586(3)
b (Å)	8.57651(16)	14.2448(2)	13.5214(3)	14.7924(6)	7.15170(10)
c (Å)	12.8743(2)	24.6718(3)	31.7529(7)	9.9257(6)	26.0618(4)
α (°)	96.2904(15)	90	90	90	90
β (°)	100.2456(13)	90	93.913(2)	96.106(5)	90
γ (°)	94.1463(12)	90	90	90	90
Volume (Å ³)	692.98(2)	3955.20(10)	4045.70(15)	1008.69(9)	4241.89(10)
Ζ	2	8	8	2	8
Calcd density	1.575	1.722	1.683	1.695	1.851
(g/cm^3)					
μ (mm ⁻¹)	2.867	1.237	1.210	1.213	1.302
F(000)	332	2032	2032	512	2328
Crystal size (mm)	0.16 x 0.08 x 0.05	0.25 x 0.16 x 0.12	0.24 x 0.21 x 0.15	0.16 x 0.14 x 0.09	0.15 x 0.08 x 0.06
θ range (°)	3.516-79.572	2.450-34.992	2.161-35.000	2.754-32.493	2.376-35.498

Table S1. Crystal data, data collection and structure refinement details

Identification code	3c	4a1	4a2	4b	4c ·1/2CH ₂ Cl ₂
Index ranges	-8<=h<=6,	-18<=h<=17,	-14<=h<=14,	-9<=h<=10,	-35<=h<=35,
	-10<=k<=10,	-22<=k<=22,	-11<=k<=21,	-22<=k<=22,	-11<=k<=8,
	-16<=l<=16	-38<=l<=39	-47<=l<=48	-14<=l<=14	-38<=l<=40
Reflections					
collected	8364	76516	41826	9325	63848
independent [R _{int}]	8364 [0.0587]	8463 [0.0503]	16449 [0.0279]	1862 [0.0370]	8926 [0.0286]
observed	7572	7332	13781	1782	7935
Completeness to $\theta_{full}/\theta_{max}$	1.000 / 0.998	1.000 / 0.973	0.999 / 0.923	0.999 /0.984	0.999 / 0.921
Data / Restraints / parameters	8364 / 0 / 200	8463 / 0 / 312	16449 / 0 / 625	1862 / 25 / 148	8926 / 0 / 341
Goodness-of-fit on F^2	1.094	1.023	1.058	1.081	1.039
R1 / wR2 [I>2σ(I)]	0.0487 / 0.1389	0.0245 / 0.0618	0.0291/ 0.0687	0.0285, 0.0735	0.0234, 0.0558
R1 / wR2 (all data)	0.0521 / 0.1427	0.0306 / 0.0642	0.0383/ 0.0720	0.0297, 0.0741	0.0279, 0.0572
$\Delta \rho_{max} / \Delta \rho_{min} ({ar e} \cdot {\mbox{\AA}}^{-3})$	0.570 / -0.437	0.560 / -0.462	0.875 / -0.668	0.871 / -0.546	0.498 / -0.580
CCDC number	2131072	2131073	2131074	2131075	2131076

Table S1. Crystal data, data collection and structure refinement details (cont.)

Fig. S37. The structure of 3c.

Fig. S38. The cations and anions in 3c form layers with an interlayer distance of 3.22 Å. Short contacts are observed within the layer and between neighboring layers, including classical π - π stacking interactions.

Atoms	Distance	Atoms	Distance	Atoms	Distance
F(1)-C(6)	1.353(2)	N(2)-C(2)	1.387(2)	C(8)-C(9)	1.396(3)
F(2)-C(7)	1.347(2)	N(2)-C(10)	1.436(2)	C(10)-C(11)	1.394(3)
F(3)-C(12)	1.352(2)	C(2)-C(3)	1.343(3)	C(10)-C(15)	1.384(3)
F(4)-C(13)	1.352(2)	C(4)-C(5)	1.395(3)	C(11)-C(12)	1.380(3)

Table S2. Selected bond distances for 3c (Å).

N(1)-C(1)	1.341(2)	C(4)-C(9)	1.397(3)	C(12)-C(13)	1.381(3)
N(1)-C(3)	1.392(2)	C(5)-C(6)	1.374(3)	C(13)-C(14)	1.368(3)
N(1)-C(4)	1.429(2)	C(6)-C(7)	1.384(3)	C(14)-C(15)	1.392(3)
N(2)-C(1)	1.331(2)	C(7)-C(8)	1.380(3)		

Atoms	Angle	Atoms	Angle
C(1)-N(1)-C(3)	108 34(15)	F(2)-C(7)-C(6)	118.92(18)
C(1) = N(1) = C(4)	100.94(15) 125.01(15)	F(2) = C(7) = C(8)	121 03(18)
C(1) - N(1) - C(4)	125.01(15) 126.52(16)	$\Gamma(2) - C(7) - C(6)$	121.03(18) 120.05(18)
C(3)-N(1)-C(4)	120.55(10)	C(8)-C(7)-C(0)	120.03(18)
C(1)-N(2)-C(2)	108.57(15)	C(7)-C(8)-C(9)	119.56(18)
C(1)-N(2)-C(10)	124.84(16)	C(8)-C(9)-C(4)	119.36(18)
C(2)-N(2)-C(10)	126.59(16)	C(11)-C(10)-N(2)	118.94(17)
N(2)-C(1)-N(1)	108.54(16)	C(15)-C(10)-N(2)	119.70(18)
C(3)-C(2)-N(2)	107.53(16)	C(15)-C(10)-C(11)	121.36(18)
C(2)-C(3)-N(1)	107.02(16)	C(12)-C(11)-C(10)	117.65(18)
C(5)-C(4)-N(1)	118.97(16)	F(3)-C(12)-C(11)	119.46(18)
C(5)-C(4)-C(9)	121.10(18)	F(3)-C(12)-C(13)	119.06(17)
C(9)-C(4)-N(1)	119.93(17)	C(11)-C(12)-C(13)	121.48(19)
C(6)-C(5)-C(4)	117.96(17)	F(4)-C(13)-C(14)	120.77(19)
F(1)-C(6)-C(5)	119.03(18)	C(14)-C(13)-C(12)	120.45(18)
F(1)-C(6)-C(7)	119.00(18)	C(13)-C(14)-C(15)	119.62(19)
C(5)-C(6)-C(7)	121.96(18)	C(10)-C(15)-C(14)	119.5(2)

Table S3. Selected bond angles for 3c (°).

Table S4. Torsion angles for 3c (°).

Atoms	Angle	Atoms	Angle
F(1)-C(6)-C(7)-F(2)	-0.5(3)	C(3)-N(1)-C(4)-C(9)	-11.3(3)
F(1)-C(6)-C(7)-C(8)	-179.88(19)	C(4)-N(1)-C(1)-N(2)	176.81(16)
F(2)-C(7)-C(8)-C(9)	-178.82(19)	C(4)-N(1)-C(3)-C(2)	-176.59(17)
F(3)-C(12)-C(13)-F(4)	-1.0(3)	C(4)-C(5)-C(6)-F(1)	179.83(18)
F(3)-C(12)-C(13)-C(14)	179.9(2)	C(4)-C(5)-C(6)-C(7)	1.0(3)
F(4)-C(13)-C(14)-C(15)	-179.4(2)	C(5)-C(4)-C(9)-C(8)	0.0(3)
N(1)-C(4)-C(5)-C(6)	-179.77(17)	C(5)-C(6)-C(7)-F(2)	178.32(18)
N(1)-C(4)-C(9)-C(8)	179.29(18)	C(5)-C(6)-C(7)-C(8)	-1.1(3)
N(2)-C(2)-C(3)-N(1)	0.1(2)	C(6)-C(7)-C(8)-C(9)	0.6(3)
N(2)-C(10)-C(11)-C(12)	-179.05(18)	C(7)-C(8)-C(9)-C(4)	-0.1(3)
N(2)-C(10)-C(15)-C(14)	179.2(2)	C(9)-C(4)-C(5)-C(6)	-0.5(3)
C(1)-N(1)-C(3)-C(2)	-0.3(2)	C(10)-N(2)-C(1)-N(1)	179.02(16)
C(1)-N(1)-C(4)-C(5)	-7.7(3)	C(10)-N(2)-C(2)-C(3)	-179.22(17)

C(1)-N(1)-C(4)-C(9)	173.03(18)	C(10)-C(11)-C(12)-F(3)	-179.78(17)
C(1)-N(2)-C(2)-C(3)	0.2(2)	C(10)-C(11)-C(12)-C(13)	-0.4(3)
C(1)-N(2)-C(10)-C(11)	10.5(3)	C(11)-C(10)-C(15)-C(14)	0.0(3)
C(1)-N(2)-C(10)-C(15)	-168.66(19)	C(11)-C(12)-C(13)-F(4)	179.6(2)
C(2)-N(2)-C(1)-N(1)	-0.4(2)	C(11)-C(12)-C(13)-C(14)	0.5(3)
C(2)-N(2)-C(10)-C(11)	-170.11(19)	C(12)-C(13)-C(14)-C(15)	-0.4(4)
C(2)-N(2)-C(10)-C(15)	10.7(3)	C(13)-C(14)-C(15)-C(10)	0.1(4)
C(3)-N(1)-C(1)-N(2)	0.5(2)	C(15)-C(10)-C(11)-C(12)	0.1(3)
C(3)-N(1)-C(4)-C(5)	167.95(18)		

The C_3N_2 - C_6 dihedral angles are 9.94° for C6= C4..C9 and 10.72° for C6= C10..C14, indicating a higher degree of conjugation.

The structure of 4a

Crystallization of 4a provides two different polymorph modifications, 4a1 and 4a2.

The structure of polymorph 4a1.

The asymmetric unit of the orthorhombic polymorph modification **4a1** contains one molecule of complex **4a**.

Figure S39. Crystal structure of 4a1. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-Cl(1)	2.3155(3)	N(2)-C(10)	1.4314(15)	C(10)-C(11)	1.3789(19)
Pd(1)-Cl(2)	2.3061(3)	N(3)-C(16)	1.3471(17)	C(10)-C(15)	1.392(2)
Pd(1)-N(3)	2.1031(10)	N(3)-C(20)	1.3428(16)	C(11)-C(12)	1.388(2)
Pd(1)-C(1)	1.9481(11)	C(2)-H(2)	0.964(19)	C(12)-C(13)	1.381(3)
F(1)-C(5)	1.3515(16)	C(2)-C(3)	1.3463(18)	C(13)-C(14)	1.384(3)
F(2)-C(11)	1.3355(19)	C(4)-C(5)	1.3829(18)	C(14)-C(15)	1.397(2)
N(1)-C(1)	1.3506(15)	C(4)-C(9)	1.3946(18)	C(16)-C(17)	1.3838(19)
N(1)-C(3)	1.3977(16)	C(5)-C(6)	1.383(2)	C(17)-C(18)	1.385(2)
N(1)-C(4)	1.4291(15)	C(6)-C(7)	1.389(2)	C(18)-C(19)	1.383(2)
N(2)-C(1)	1.3494(15)	C(7)-C(8)	1.390(2)	C(19)-C(20)	1.3891(18)
N(2)-C(2)	1.3958(16)	C(8)-C(9)	1.3919(19)		

Table S5. Selected bond distances for 4a1 (Å).

Table S6. Selected bond angles for 4a1 (°).

Atoms	Angle	Atoms	Angle
Cl(2)-Pd(1)-Cl(1)	173.202(12)	F(1)-C(5)-C(4)	118.55(11)
N(3)-Pd(1)-Cl(1)	93.45(3)	F(1)-C(5)-C(6)	119.51(12)
N(3)-Pd(1)-Cl(2)	92.47(3)	C(6)-C(5)-C(4)	121.91(13)
C(1)-Pd(1)-Cl(1)	87.13(4)	C(5)-C(6)-C(7)	118.61(14)
C(1)-Pd(1)-Cl(2)	87.29(4)	C(6)-C(7)-C(8)	120.60(13)
C(1)-Pd(1)-N(3)	174.62(4)	C(7)-C(8)-C(9)	119.96(13)
C(1)-N(1)-C(3)	110.51(10)	C(8)-C(9)-C(4)	119.78(12)
C(1)-N(1)-C(4)	121.88(10)	C(11)-C(10)-N(2)	120.13(12)
C(3)-N(1)-C(4)	127.41(10)	C(11)-C(10)-C(15)	119.58(12)
C(1)-N(2)-C(2)	110.60(10)	C(15)-C(10)-N(2)	120.29(12)
C(1)-N(2)-C(10)	123.31(10)	F(2)-C(11)-C(10)	118.90(12)
C(2)-N(2)-C(10)	125.96(10)	F(2)-C(11)-C(12)	119.67(15)
C(16)-N(3)-Pd(1)	119.74(8)	C(10)-C(11)-C(12)	121.43(16)
C(20)-N(3)-Pd(1)	122.01(9)	C(13)-C(12)-C(11)	118.78(16)
C(20)-N(3)-C(16)	118.25(11)	C(12)-C(13)-C(14)	120.83(14)
N(1)-C(1)-Pd(1)	124.27(9)	C(13)-C(14)-C(15)	119.98(18)
N(2)-C(1)-Pd(1)	130.22(9)	C(10)-C(15)-C(14)	119.41(16)
N(2)-C(1)-N(1)	105.48(10)	N(3)-C(16)-C(17)	122.12(12)
C(3)-C(2)-N(2)	106.73(11)	C(16)-C(17)-C(18)	119.36(13)
C(2)-C(3)-N(1)	106.66(11)	C(19)-C(18)-C(17)	118.84(12)
C(5)-C(4)-N(1)	120.24(11)	C(18)-C(19)-C(20)	118.71(12)
C(5)-C(4)-C(9)	119.08(11)	N(3)-C(20)-C(19)	122.68(12)
C(9)-C(4)-N(1)	120.34(11)		

Table S7. Torsion angles for 4a1 (°).

Atoms	Angle	Atoms	Angle
Pd(1)-N(3)-C(16)-C(17)	-179.60(11)	C(4)-N(1)-C(1)-Pd(1)	-7.01(16)
Pd(1)-N(3)-C(20)-C(19)	-178.90(10)	C(4)-N(1)-C(1)-N(2)	174.84(11)
F(1)-C(5)-C(6)-C(7)	177.41(13)	C(4)-N(1)-C(3)-C(2)	-174.80(12)
F(2)-C(11)-C(12)-C(13)	178.74(13)	C(4)-C(5)-C(6)-C(7)	-0.7(2)
N(1)-C(4)-C(5)-F(1)	-6.31(18)	C(5)-C(4)-C(9)-C(8)	2.71(19)
N(1)-C(4)-C(5)-C(6)	171.82(12)	C(5)-C(6)-C(7)-C(8)	1.7(2)
N(1)-C(4)-C(9)-C(8)	-170.59(12)	C(6)-C(7)-C(8)-C(9)	-0.4(2)
N(2)-C(2)-C(3)-N(1)	0.22(15)	C(7)-C(8)-C(9)-C(4)	-1.8(2)
N(2)-C(10)-C(11)-F(2)	1.05(18)	C(9)-C(4)-C(5)-F(1)	-179.61(11)
N(2)-C(10)-C(11)-C(12)	-179.24(12)	C(9)-C(4)-C(5)-C(6)	-1.5(2)
N(2)-C(10)-C(15)-C(14)	-179.90(13)	C(10)-N(2)-C(1)-Pd(1)	6.47(18)
N(3)-C(16)-C(17)-C(18)	-1.1(2)	C(10)-N(2)-C(1)-N(1)	-175.53(11)
C(1)-N(1)-C(3)-C(2)	0.11(15)	C(10)-N(2)-C(2)-C(3)	175.46(12)
C(1)-N(1)-C(4)-C(5)	-118.30(14)	C(10)-C(11)-C(12)-C(13)	-1.0(2)
C(1)-N(1)-C(4)-C(9)	54.92(17)	C(11)-C(10)-C(15)-C(14)	0.2(2)
C(1)-N(2)-C(2)-C(3)	-0.49(16)	C(11)-C(12)-C(13)-C(14)	0.4(2)
C(1)-N(2)-C(10)-C(11)	-119.02(14)	C(12)-C(13)-C(14)-C(15)	0.4(2)
C(1)-N(2)-C(10)-C(15)	61.07(17)	C(13)-C(14)-C(15)-C(10)	-0.7(2)
C(2)-N(2)-C(1)-Pd(1)	-177.46(10)	C(15)-C(10)-C(11)-F(2)	-179.04(12)
C(2)-N(2)-C(1)-N(1)	0.54(14)	C(15)-C(10)-C(11)-C(12)	0.7(2)
C(2)-N(2)-C(10)-C(11)	65.53(17)	C(16)-N(3)-C(20)-C(19)	2.07(19)
C(2)-N(2)-C(10)-C(15)	-114.38(15)	C(16)-C(17)-C(18)-C(19)	1.3(2)
C(3)-N(1)-C(1)-Pd(1)	177.75(9)	C(17)-C(18)-C(19)-C(20)	0.2(2)
C(3)-N(1)-C(1)-N(2)	-0.40(14)	C(18)-C(19)-C(20)-N(3)	-1.9(2)
C(3)-N(1)-C(4)-C(5)	56.08(18)	C(20)-N(3)-C(16)-C(17)	-0.6(2)
C(3)-N(1)-C(4)-C(9)	-130.70(14)		

The structure of polymorph 4a2.

The asymmetric unit of monoclinic polymorph modification **4a2** contains two crystallographically inequivalent molecules of complex **4a**.

Figure S40. Unit cell and two inequivalent molecules of complex 4a in polymorph modification 4a2.

Figure S41. The structure of the first molecule of 4a in 4a2. Thermal ellipsoids are set to a 50% probability level.

Figure S42. The structure of the second molecule of 4a in 4a2. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1A)-Cl(1A)	2.3140(4)	C(11A)-C(12A)	1.382(2)	N(2B)-C(10B)	1.429(2)
Pd(1A)-Cl(2A)	2.3079(4)	C(12A)-C(13A)	1.382(2)	C(2B)-C(3B)	1.343(2)
Pd(1A)-C(1A)	1.9507(14)	C(13A)-C(14A)	1.387(2)	C(4B)-C(5B)	1.380(2)
Pd(1A)-N(3A)	2.0927(12)	C(14A)-C(15A)	1.385(2)	C(4B)-C(9B)	1.389(2)
F(1A)-C(5A)	1.3546(19)	N(3A)-C(16A)	1.343(2)	C(5B)-C(6B)	1.378(2)
F(2A)-C(11A)	1.3529(18)	N(3A)-C(20A)	1.343(2)	C(6B)-C(7B)	1.383(3)
N(1A)-C(1A)	1.3517(19)	C(16A)-C(17A)	1.389(2)	C(7B)-C(8B)	1.387(3)
N(1A)-C(3A)	1.3933(19)	C(17A)-C(18A)	1.386(3)	C(8B)-C(9B)	1.393(3)
N(1A)-C(4A)	1.4305(18)	C(18A)-C(19A)	1.383(3)	C(10B)-C(11B)	1.387(2)
C(1A)-N(2A)	1.3547(18)	C(19A)-C(20A)	1.386(2)	C(10B)-C(15B)	1.389(2)
N(2A)-C(2A)	1.3962(19)	Pd(1B)-Cl(1B)	2.3116(4)	C(11B)-C(12B)	1.384(2)
N(2A)-C(10A)	1.4305(19)	Pd(1B)-Cl(2B)	2.3018(4)	C(12B)-C(13B)	1.383(3)
C(2A)-C(3A)	1.344(2)	Pd(1B)-C(1B)	1.9497(15)	C(13B)-C(14B)	1.384(3)

Table S8. Selected bond distances for 4a2 (Å).

C(4A)-C(5A)	1.381(2)	Pd(1B)-N(3B)	2.0846(13)	C(14B)-C(15B)	1.393(3)
C(4A)-C(9A)	1.388(2)	F(1B)-C(5B)	1.350(2)	N(3B)-C(16B)	1.341(2)
C(5A)-C(6A)	1.379(2)	F(2B)-C(11B)	1.3540(19)	N(3B)-C(20B)	1.349(2)
C(6A)-C(7A)	1.385(3)	N(1B)-C(1B)	1.3482(19)	C(16B)-C(17B)	1.385(2)
C(7A)-C(8A)	1.385(3)	N(1B)-C(3B)	1.397(2)	C(17B)-C(18B)	1.382(2)
C(8A)-C(9A)	1.391(2)	N(1B)-C(4B)	1.425(2)	C(18B)-C(19B)	1.388(2)
C(10A)-C(11A)	1.380(2)	C(1B)-N(2B)	1.358(2)	C(19B)-C(20B)	1.385(2)
C(10A)-C(15A)	1.387(2)	N(2B)-C(2B)	1.402(2)		

Table S9. Selected bond angles for $4a2~(^\circ).$

Atoms	Angle	Atoms	Angle
Cl(2A)-Pd(1A)-Cl(1A)	174.449(14)	C(15A)-C(10A)-N(2A)	120.63(13)
C(1A)-Pd(1A)-Cl(1A)	87.15(4)	F(2A)-C(11A)-C(10A)	118.78(13)
C(1A)-Pd(1A)-Cl(2A)	88.12(4)	N(3B)-Pd(1B)-Cl(1B)	92.77(4)
C(1A)-Pd(1A)-N(3A)	179.29(6)	N(3B)-Pd(1B)-Cl(2B)	91.11(4)
N(3A)-Pd(1A)-Cl(1A)	92.21(4)	C(1B)-N(1B)-C(3B)	110.75(13)
N(3A)-Pd(1A)-Cl(2A)	92.53(4)	C(1B)-N(1B)-C(4B)	123.27(13)
C(1A)-N(1A)-C(3A)	110.87(12)	C(3B)-N(1B)-C(4B)	125.98(13)
C(1A)-N(1A)-C(4A)	123.58(12)	N(1B)-C(1B)-Pd(1B)	127.68(11)
C(3A)-N(1A)-C(4A)	125.45(12)	N(1B)-C(1B)-N(2B)	105.28(13)
N(1A)-C(1A)-Pd(1A)	127.65(10)	N(2B)-C(1B)-Pd(1B)	126.56(11)
N(1A)-C(1A)-N(2A)	104.90(12)	C(1B)-N(2B)-C(2B)	110.38(13)
N(2A)-C(1A)-Pd(1A)	127.44(11)	C(1B)-N(2B)-C(10B)	123.36(13)
C(1A)-N(2A)-C(2A)	110.80(12)	C(2B)-N(2B)-C(10B)	126.25(13)
C(1A)-N(2A)-C(10A)	123.66(12)	C(3B)-C(2B)-N(2B)	106.63(14)
C(2A)-N(2A)-C(10A)	125.45(12)	C(2B)-C(3B)-N(1B)	106.94(13)
C(3A)-C(2A)-N(2A)	106.58(13)	C(5B)-C(4B)-N(1B)	119.83(15)
C(2A)-C(3A)-N(1A)	106.85(13)	F(2B)-C(11B)-C(12B)	119.10(15)
C(5A)-C(4A)-N(1A)	119.51(13)	C(12B)-C(11B)-C(10B)	122.37(16)
C(5A)-C(4A)-C(9A)	119.03(14)	C(13B)-C(12B)-C(11B)	118.24(17)
C(9A)-C(4A)-N(1A)	121.43(13)	C(12B)-C(13B)-C(14B)	120.56(17)
F(1A)-C(5A)-C(4A)	118.59(14)	C(13B)-C(14B)-C(15B)	120.47(18)
F(1A)-C(5A)-C(6A)	119.47(15)	C(10B)-C(15B)-C(14B)	119.69(17)
C(6A)-C(5A)-C(4A)	121.94(15)	C(16B)-N(3B)-Pd(1B)	122.53(11)
C(5A)-C(6A)-C(7A)	118.60(16)	C(16B)-N(3B)-C(20B)	118.24(14)
C(8A)-C(7A)-C(6A)	120.65(16)	C(20B)-N(3B)-Pd(1B)	119.18(10)
C(7A)-C(8A)-C(9A)	119.89(16)	N(3B)-C(16B)-C(17B)	122.38(15)
C(4A)-C(9A)-C(8A)	119.89(15)	C(18B)-C(17B)-C(16B)	119.34(15)
C(11A)-C(10A)-N(2A)	120.63(14)	C(17B)-C(18B)-C(19B)	118.69(15)

118.74(14)	C(20B)-C(19B)-C(18B)	118.91(15)
119.25(14)	N(3B)-C(20B)-C(19B)	122.44(15)
121.97(15)	C(5B)-C(4B)-C(9B)	119.43(15)
118.71(15)	C(9B)-C(4B)-N(1B)	120.70(14)
120.30(15)	F(1B)-C(5B)-C(4B)	118.88(15)
120.14(16)	F(1B)-C(5B)-C(6B)	119.04(15)
120.12(15)	C(6B)-C(5B)-C(4B)	122.07(17)
120.46(10)	C(5B)-C(6B)-C(7B)	118.36(17)
118.08(13)	C(6B)-C(7B)-C(8B)	120.69(17)
121.26(11)	C(7B)-C(8B)-C(9B)	120.22(19)
122.55(16)	C(4B)-C(9B)-C(8B)	119.19(16)
118.81(16)	C(11B)-C(10B)-N(2B)	120.52(14)
118.92(15)	C(11B)-C(10B)-C(15B)	118.56(15)
118.87(16)	C(15B)-C(10B)-N(2B)	120.86(15)
122.70(15)	F(2B)-C(11B)-C(10B)	118.52(14)
174.388(16)	C(1B)-Pd(1B)-Cl(2B)	90.41(5)
86.01(5)	C(1B)-Pd(1B)-N(3B)	175.64(6)
	118.74(14) $119.25(14)$ $121.97(15)$ $118.71(15)$ $120.30(15)$ $120.14(16)$ $120.12(15)$ $120.46(10)$ $118.08(13)$ $121.26(11)$ $122.55(16)$ $118.81(16)$ $118.92(15)$ $118.87(16)$ $122.70(15)$ $174.388(16)$ $86.01(5)$	118.74(14) $C(20B)-C(19B)-C(18B)$ $119.25(14)$ $N(3B)-C(20B)-C(19B)$ $121.97(15)$ $C(5B)-C(4B)-C(9B)$ $118.71(15)$ $C(9B)-C(4B)-N(1B)$ $120.30(15)$ $F(1B)-C(5B)-C(4B)$ $120.14(16)$ $F(1B)-C(5B)-C(6B)$ $120.12(15)$ $C(6B)-C(5B)-C(4B)$ $120.46(10)$ $C(5B)-C(6B)-C(7B)$ $118.08(13)$ $C(6B)-C(7B)-C(8B)$ $121.26(11)$ $C(7B)-C(8B)-C(9B)$ $122.55(16)$ $C(4B)-C(9B)-C(8B)$ $118.81(16)$ $C(11B)-C(10B)-N(2B)$ $118.92(15)$ $C(15B)-C(10B)-N(2B)$ $122.70(15)$ $F(2B)-C(11B)-C(10B)$ $174.388(16)$ $C(1B)-Pd(1B)-N(3B)$

Table S10. Torsion angles for 4a2 (°).

Atoms	Angle	Atoms	Angle
Pd(1A)-C(1A)-N(2A)-C(2A)	-179.35(11)	C(3A)-N(1A)-C(4A)-C(9A)	123.96(17)
Pd(1A)-C(1A)-N(2A)-C(10A)	-2.7(2)	C(4A)-N(1A)-C(1A)-Pd(1A)	2.8(2)
Pd(1A)-N(3A)-C(16A)-C(17A)	-172.55(12)	C(4A)-N(1A)-C(1A)-N(2A)	-176.58(13)
Pd(1A)-N(3A)-C(20A)-C(19A)	174.06(12)	C(4A)-N(1A)-C(3A)-C(2A)	176.43(14)
F(1A)-C(5A)-C(6A)-C(7A)	-179.42(17)	C(4A)-C(5A)-C(6A)-C(7A)	-0.2(3)
F(2A)-C(11A)-C(12A)-C(13A)	-178.11(14)	C(5A)-C(4A)-C(9A)-C(8A)	0.8(3)
N(1A)-C(1A)-N(2A)-C(2A)	0.02(17)	C(5A)-C(6A)-C(7A)-C(8A)	0.4(3)
N(1A)-C(1A)-N(2A)-C(10A)	176.69(13)	C(6A)-C(7A)-C(8A)-C(9A)	0.0(3)
N(1A)-C(4A)-C(5A)-F(1A)	0.6(2)	C(7A)-C(8A)-C(9A)-C(4A)	-0.6(3)
N(1A)-C(4A)-C(5A)-C(6A)	-178.62(16)	C(9A)-C(4A)-C(5A)-F(1A)	178.81(15)
N(1A)-C(4A)-C(9A)-C(8A)	178.97(16)	C(9A)-C(4A)-C(5A)-C(6A)	-0.4(3)
C(1A)-N(1A)-C(3A)-C(2A)	-0.13(18)	C(10A)-N(2A)-C(2A)-C(3A)	-176.70(14)
C(1A)-N(1A)-C(4A)-C(5A)	118.24(17)	C(10A)-C(11A)-C(12A)-C(13A)	1.3(2)
C(1A)-N(1A)-C(4A)-C(9A)	-59.9(2)	C(11A)-C(10A)-C(15A)-C(14A)	-1.5(2)
C(1A)-N(2A)-C(2A)-C(3A)	-0.10(18)	C(11A)-C(12A)-C(13A)-C(14A)	-1.5(2)
C(1A)-N(2A)-C(10A)-C(11A)	128.78(16)	C(12A)-C(13A)-C(14A)-C(15A)	0.3(3)
C(1A)-N(2A)-C(10A)-C(15A)	-50.5(2)	C(13A)-C(14A)-C(15A)-C(10A)	1.2(3)
N(2A)-C(2A)-C(3A)-N(1A)	0.14(18)	C(15A)-C(10A)-C(11A)-F(2A)	179.62(14)
N(2A)-C(10A)-C(11A)-F(2A)	0.3(2)	C(15A)-C(10A)-C(11A)-C(12A)	0.2(2)

N(2A)-C(10A)-C(11A)-C(12A)	-179.12(14)	N(3A)-C(16A)-C(17A)-C(18A)	-1.7(2)
N(2A)-C(10A)-C(15A)-C(14A)	177.87(15)	C(16A)-N(3A)-C(20A)-C(19A)	-0.9(2)
C(2A)-N(2A)-C(10A)-C(11A)	-55.0(2)	C(16A)-C(17A)-C(18A)-C(19A)	-0.6(2)
C(2A)-N(2A)-C(10A)-C(15A)	125.63(17)	C(17A)-C(18A)-C(19A)-C(20A)	2.0(2)
C(3A)-N(1A)-C(1A)-Pd(1A)	179.43(11)	C(18A)-C(19A)-C(20A)-N(3A)	-1.3(3)
C(3A)-N(1A)-C(1A)-N(2A)	0.06(17)	C(20A)-N(3A)-C(16A)-C(17A)	2.5(2)
C(3A)-N(1A)-C(4A)-C(5A)	-57.9(2)	Pd(1B)-C(1B)-N(2B)-C(2B)	171.95(11)
Pd(1B)-C(1B)-N(2B)-C(10B)	-9.2(2)	C(1B)-N(1B)-C(4B)-C(9B)	50.2(2)
Pd(1B)-N(3B)-C(16B)-C(17B)	178.17(14)	C(1B)-N(2B)-C(2B)-C(3B)	0.11(18)
Pd(1B)-N(3B)-C(20B)-C(19B)	-177.41(13)	C(1B)-N(2B)-C(10B)-C(11B)	-124.61(17)
F(1B)-C(5B)-C(6B)-C(7B)	176.04(15)	C(1B)-N(2B)-C(10B)-C(15B)	52.6(2)
F(2B)-C(11B)-C(12B)-C(13B)	-177.70(17)	N(2B)-C(2B)-C(3B)-N(1B)	0.44(17)
N(1B)-C(1B)-N(2B)-C(2B)	-0.63(17)	N(2B)-C(10B)-C(11B)-F(2B)	-6.5(2)
N(1B)-C(1B)-N(2B)-C(10B)	178.20(14)	N(2B)-C(10B)-C(11B)-C(12B)	173.42(16)
N(1B)-C(4B)-C(5B)-F(1B)	0.5(2)	N(2B)-C(10B)-C(15B)-C(14B)	-174.79(18)
N(1B)-C(4B)-C(5B)-C(6B)	179.04(15)	C(2B)-N(2B)-C(10B)-C(11B)	54.0(2)
N(1B)-C(4B)-C(9B)-C(8B)	-177.21(15)	C(2B)-N(2B)-C(10B)-C(15B)	-128.72(19)
C(1B)-N(1B)-C(3B)-C(2B)	-0.87(18)	C(3B)-N(1B)-C(1B)-Pd(1B)	-171.55(12)
C(1B)-N(1B)-C(4B)-C(5B)	-127.64(16)	C(3B)-N(1B)-C(1B)-N(2B)	0.92(17)
C(3B)-N(1B)-C(4B)-C(5B)	51.7(2)	C(10B)-N(2B)-C(2B)-C(3B)	-178.68(15)
C(3B)-N(1B)-C(4B)-C(9B)	-130.37(17)	C(10B)-C(11B)-C(12B)-C(13B)	2.4(3)
C(4B)-N(1B)-C(1B)-Pd(1B)	7.9(2)	C(11B)-C(10B)-C(15B)-C(14B)	2.5(3)
C(4B)-N(1B)-C(1B)-N(2B)	-179.62(14)	C(11B)-C(12B)-C(13B)-C(14B)	0.5(3)
C(4B)-N(1B)-C(3B)-C(2B)	179.68(14)	C(12B)-C(13B)-C(14B)-C(15B)	-1.8(4)
C(4B)-C(5B)-C(6B)-C(7B)	-2.5(3)	C(13B)-C(14B)-C(15B)-C(10B)	0.2(3)
C(5B)-C(4B)-C(9B)-C(8B)	0.7(2)	C(15B)-C(10B)-C(11B)-F(2B)	176.20(16)
C(5B)-C(6B)-C(7B)-C(8B)	2.1(3)	C(15B)-C(10B)-C(11B)-C(12B)	-3.9(3)
C(6B)-C(7B)-C(8B)-C(9B)	-0.3(3)	N(3B)-C(16B)-C(17B)-C(18B)	-1.0(3)
C(7B)-C(8B)-C(9B)-C(4B)	-1.1(3)	C(16B)-N(3B)-C(20B)-C(19B)	-0.1(3)
C(9B)-C(4B)-C(5B)-F(1B)	-177.42(14)	C(16B)-C(17B)-C(18B)-C(19B)	0.2(3)
C(9B)-C(4B)-C(5B)-C(6B)	1.1(2)	C(17B)-C(18B)-C(19B)-C(20B)	0.6(3)
C(18B)-C(19B)-C(20B)-N(3B)	-0.7(3)	C(20B)-N(3B)-C(16B)-C(17B)	0.9(3)

The structure of 4b

Better refinement results for **4b** were obtained in the C2/m space group rather than in C2. Other space groups were also tested.

Figure S43. Crystallographically inequivalent fragment of the molecule **4b**. Thermal ellipsoids are set to a 50% probability level.

Figure S44. The real structure of **4b**, which is superposition of two equivalent molecules **4b**. Thermal ellipsoids are set to a 50% probability level.

Atom Pd1 is located at an inversion center; atoms Pd1, Cl1, C1, N2 and C11 are situated on a mirror plane. The occupancy of atoms Pd1, C1, N2 and C11 situated on a mirror plane is 0.25, other atoms (except for disordered H7/F2 and H5/F1 fragments) have occupancy of 0.5. Therefore, half the molecule **4b** is crystallographically unique (Fig. S43) and Z'=1/4.

The overall structure with symmetry generated atoms is shown in Fig. S44, which is the result of a superposition of two equivalent molecules (shown in Fig. S45) both having occupancies of 0.5. Additionally, the fluorine atom is disordered over two positions (Fig. S45). The structure of the complex with omitted disorder is shown in Fig. S46.

A relatively poor precision in determining bond lengths is likely because the asymmetric unit is fully disordered over four positions. Unfortunately, further modeling, where atoms N2, C1, and C11 were slightly out of the crystallographic mirror plane, did not provide a better crystallographic model for **4b**.

Figure S45. The structure of complex **4b** (occupancy is 0.5). The thermal ellipsoids are set to a 50% probability level. The disorder ratio for atoms H7/F2 and F1/H5 is 0.896(5):0.104(5).

Figure S46. The structure of complex **4b**. The thermal ellipsoids are set to a 50% probability level. The fluorine disorder is not shown for clarity.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-Cl(1)	2.3176(6)	C(3)-C(8)	1.389(5)	C(7)-F(2)	1.320(6)
Pd(1)-C(1)	1.88(3)	C(4)-H(4)	0.976(10)	C(7)-C(8)	1.390(6)
Pd(1)-N(2)	2.12(2)	C(4)-C(5)	1.387(6)	C(8)-H(8)	0.975(10)
C(1)-N(1)	1.31(2)	C(5)-H(5)	0.980(10)	N(2)-C(9)	1.404(17)
N(1)-C(2)	1.353(12)	C(5)-F(1)	1.325(6)	C(9)-H(9)	0.978(10)
N(1)-C(3)	1.530(11)	C(5)-C(6)	1.374(6)	C(9)-C(10)	1.443(13)
C(2)-C(2)#1	1.343(12)	C(6)-H(6)	0.973(10)	C(10)-H(10)	0.980(10)
C(2)-H(2)	0.974(10)	C(6)-C(7)	1.384(6)	C(10)-C(11)	1.377(7)
C(3)-C(4)	1.389(6)	C(7)-H(7)	1.105(9)	C(11)-H(11)	0.981(10)

Table S11. Selected bond distances for 4b (Å).

Symmetry transformation to generate equivalent atoms: #1 -x+1, y, -z+1

Atoms	Angle	Atoms	Angle
Cl(1)#2-Pd(1)-Cl(1)	180.00(3)	F(1)-C(5)-C(4)	117.0(4)
C(1)-Pd(1)-Cl(1)	90.000(1)	F(1)-C(5)-C(6)	120.2(4)
C(1)-Pd(1)-N(2)	180.0	C(6)-C(5)-C(4)	122.7(4)
N(2)-Pd(1)-Cl(1)	90.000(2)	C(5)-C(6)-C(7)	118.4(4)
N(1)-C(1)-Pd(1)	132.0(10)	C(6)-C(7)-C(8)	121.1(3)
C(1)-N(1)-C(2)	119.0(12)	F(2)-C(7)-C(6)	109.5(8)
C(1)-N(1)-C(3)	120.5(11)	F(2)-C(7)-C(8)	128.7(9)
C(2)-N(1)-C(3)	120.3(8)	C(3)-C(8)-C(7)	118.8(3)
C(2)#1-C(2)-N(1)	102.9(5)	C(9)-N(2)-Pd(1)	116.0(9)
C(4)-C(3)-N(1)	117.1(5)	C(9)#1-N(2)-C(9)	128.0(19)
C(8)-C(3)-N(1)	121.5(5)	N(2)-C(9)-C(10)	113.0(12)
C(8)-C(3)-C(4)	121.3(4)	C(11)-C(10)-C(9)	123.3(7)
C(5)-C(4)-C(3)	117.6(4)	C(10)-C(11)-C(10)#1	119.2(6)

Table S12. Selected bond angles for 4b (°).

Symmetry transformations to generate equivalent atoms: #1 -x+1, y, -z+1; #2 -x+1, -y+1, -z+1

Table S13. Torsion angles for 4b (°).

Atoms	Angle	Atoms	Angle
Pd(1)-C(1)-N(1)-C(2)	-178.5(4)	C(3)-N(1)-C(2)-C(2)#1	-179.0(7)
Pd(1)-C(1)-N(1)-C(3)	-3.2(10)	C(3)-C(4)-C(5)-F(1)	177.3(5)
Pd(1)-N(2)-C(9)-C(10)	-177.7(6)	C(3)-C(4)-C(5)-C(6)	0.0(7)
Cl(1)-Pd(1)-C(1)-N(1)	-63.9(6)	C(4)-C(3)-C(8)-C(7)	-1.4(5)
Cl(1)-Pd(1)-C(1)-N(1)#1	116.1(6)	C(4)-C(5)-C(6)-C(7)	0.3(7)
C(1)-N(1)-C(2)-C(2)#1	-3.7(11)	C(5)-C(6)-C(7)-F(2)	-172.4(5)
C(1)-N(1)-C(3)-C(4)	137.7(6)	C(5)-C(6)-C(7)-C(8)	-1.1(6)
C(1)-N(1)-C(3)-C(8)	-40.6(9)	F(1)-C(5)-C(6)-C(7)	-177.0(5)
N(1)#1-C(1)-N(1)-C(2)	1.5(4)	C(6)-C(7)-C(8)-C(3)	1.6(5)
N(1)#1-C(1)-N(1)-C(3)	176.8(10)	F(2)-C(7)-C(8)-C(3)	171.1(5)
N(1)-C(3)-C(4)-C(5)	-177.7(5)	C(8)-C(3)-C(4)-C(5)	0.6(6)
N(1)-C(3)-C(8)-C(7)	176.8(5)	N(2)-C(9)-C(10)-C(11)	-5.0(14)
C(2)-N(1)-C(3)-C(4)	-47.1(9)	C(9)#1-N(2)-C(9)-C(10)	2.3(6)
C(2)-N(1)-C(3)-C(8)	134.6(7)	C(9)-C(10)-C(11)-C(10)#1	2.7(7)

Symmetry transformations to generate equivalent atoms: #1 -x+1, y, -z+1 #2 -x+1, -y+1, -z+1

The structure of 4c

Figure S47. The molecular structure of $4c \cdot \frac{1}{2}CH_2Cl_2$. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-Cl(1)	2.3155(3)	N(2)-C(1)	1.3563(14)	C(8)-C(9)	1.3935(16)
Pd(1)-Cl(2)	2.3178(3)	N(2)-C(2)	1.3962(14)	C(10)-C(11)	1.3963(16)
Pd(1)-N(3)	2.0872(10)	N(2)-C(10)	1.4283(14)	C(10)-C(15)	1.3917(16)
Pd(1)-C(1)	1.9558(11)	N(3)-C(16)	1.3481(16)	C(11)-C(12)	1.3807(16)
F(1)-C(6)	1.3392(14)	N(3)-C(20)	1.3441(15)	C(12)-C(13)	1.3814(18)
F(2)-C(7)	1.3497(14)	C(2)-C(3)	1.3459(16)	C(13)-C(14)	1.3814(18)
F(3)-C(12)	1.3436(14)	C(4)-C(5)	1.3918(16)	C(14)-C(15)	1.3962(16)
F(4)-C(13)	1.3439(14)	C(4)-C(9)	1.3919(16)	C(16)-C(17)	1.3852(18)
N(1)-C(1)	1.3582(14)	C(5)-C(6)	1.3806(17)	C(17)-C(18)	1.389(2)
N(1)-C(3)	1.3958(14)	C(6)-C(7)	1.3799(18)	C(18)-C(19)	1.387(2)
N(1)-C(4)	1.4277(14)	C(7)-C(8)	1.3849(17)		

Table S14. Selected bond distances for 4c (Å).

Atoms	Angle	Atoms	Angle
Cl(1)-Pd(1)-Cl(2)	175.042(10)	F(1)-C(6)-C(7)	119.41(11)
N(3)-Pd(1)-Cl(1)	91.57(3)	C(7)-C(6)-C(5)	120.89(11)
N(3)-Pd(1)-Cl(2)	93.38(3)	F(2)-C(7)-C(6)	118.79(11)
C(1)-Pd(1)-Cl(1)	87.49(3)	F(2)-C(7)-C(8)	120.32(12)
C(1)-Pd(1)-Cl(2)	87.57(3)	C(6)-C(7)-C(8)	120.89(11)
C(1)-Pd(1)-N(3)	178.63(4)	C(7)-C(8)-C(9)	119.00(11)
C(1)-N(1)-C(3)	110.72(9)	C(4)-C(9)-C(8)	119.58(10)
C(1)-N(1)-C(4)	125.07(9)	C(11)-C(10)-N(2)	117.57(10)
C(3)-N(1)-C(4)	124.13(9)	C(15)-C(10)-N(2)	121.36(10)
C(1)-N(2)-C(2)	110.67(9)	C(15)-C(10)-C(11)	121.06(10)
C(1)-N(2)-C(10)	126.10(9)	C(12)-C(11)-C(10)	118.46(11)
C(2)-N(2)-C(10)	123.21(9)	F(3)-C(12)-C(11)	119.55(11)
C(16)-N(3)-Pd(1)	121.76(8)	F(3)-C(12)-C(13)	119.54(11)
C(20)-N(3)-Pd(1)	119.77(8)	C(11)-C(12)-C(13)	120.90(11)
C(20)-N(3)-C(16)	118.34(10)	F(4)-C(13)-C(12)	118.62(11)
N(1)-C(1)-Pd(1)	127.18(8)	F(4)-C(13)-C(14)	120.55(12)
N(2)-C(1)-Pd(1)	127.81(8)	C(14)-C(13)-C(12)	120.83(11)
N(2)-C(1)-N(1)	104.98(9)	C(13)-C(14)-C(15)	119.28(11)
C(3)-C(2)-N(2)	106.88(10)	C(10)-C(15)-C(14)	119.44(11)
C(2)-C(3)-N(1)	106.74(9)	N(3)-C(16)-C(17)	122.32(12)
C(5)-C(4)-N(1)	117.84(10)	C(16)-C(17)-C(18)	119.04(13)
C(5)-C(4)-C(9)	121.14(10)	C(19)-C(18)-C(17)	118.75(12)
C(9)-C(4)-N(1)	121.02(10)	C(20)-C(19)-C(18)	119.03(12)
C(6)-C(5)-C(4)	118.43(11)	N(3)-C(20)-C(19)	122.51(12)
F(1)-C(6)-C(5)	119.68(12)		

Table S15. Selected bond angles for $4c~(^\circ).$

Table S16. Torsion angles for 4c (°).

Atoms	Angle	Atoms	Angle
Pd(1)-N(3)-C(16)-C(17)	-175.76(11)	C(4)-N(1)-C(1)-Pd(1)	1.12(16)
Pd(1)-N(3)-C(20)-C(19)	175.73(10)	C(4)-N(1)-C(1)-N(2)	-177.12(10)
F(1)-C(6)-C(7)-F(2)	-0.69(18)	C(4)-N(1)-C(3)-C(2)	176.60(10)
F(1)-C(6)-C(7)-C(8)	179.34(11)	C(4)-C(5)-C(6)-F(1)	178.87(11)
F(2)-C(7)-C(8)-C(9)	-178.28(11)	C(4)-C(5)-C(6)-C(7)	0.47(19)
F(3)-C(12)-C(13)-F(4)	-0.06(19)	C(5)-C(4)-C(9)-C(8)	-2.38(18)
F(3)-C(12)-C(13)-C(14)	179.33(12)	C(5)-C(6)-C(7)-F(2)	177.72(11)
F(4)-C(13)-C(14)-C(15)	179.76(12)	C(5)-C(6)-C(7)-C(8)	-2.26(19)
N(1)-C(4)-C(5)-C(6)	-177.97(11)	C(6)-C(7)-C(8)-C(9)	1.70(18)

		1	
N(1)-C(4)-C(9)-C(8)	177.43(10)	C(7)-C(8)-C(9)-C(4)	0.59(17)
N(2)-C(2)-C(3)-N(1)	0.72(13)	C(9)-C(4)-C(5)-C(6)	1.84(18)
N(2)-C(10)-C(11)-C(12)	179.39(11)	C(10)-N(2)-C(1)-Pd(1)	4.07(17)
N(2)-C(10)-C(15)-C(14)	179.41(11)	C(10)-N(2)-C(1)-N(1)	-177.70(10)
N(3)-C(16)-C(17)-C(18)	-0.2(2)	C(10)-N(2)-C(2)-C(3)	177.54(10)
C(1)-N(1)-C(3)-C(2)	-0.31(13)	C(10)-C(11)-C(12)-F(3)	-179.77(11)
C(1)-N(1)-C(4)-C(5)	139.93(12)	C(10)-C(11)-C(12)-C(13)	1.21(18)
C(1)-N(1)-C(4)-C(9)	-39.88(17)	C(11)-C(10)-C(15)-C(14)	-1.71(18)
C(1)-N(2)-C(2)-C(3)	-0.92(13)	C(11)-C(12)-C(13)-F(4)	178.95(12)
C(1)-N(2)-C(10)-C(11)	140.96(12)	C(11)-C(12)-C(13)-C(14)	-1.7(2)
C(1)-N(2)-C(10)-C(15)	-40.12(17)	C(12)-C(13)-C(14)-C(15)	0.4(2)
C(2)-N(2)-C(1)-Pd(1)	-177.52(8)	C(13)-C(14)-C(15)-C(10)	1.27(19)
C(2)-N(2)-C(1)-N(1)	0.71(12)	C(15)-C(10)-C(11)-C(12)	0.47(18)
C(2)-N(2)-C(10)-C(11)	-37.25(16)	C(16)-N(3)-C(20)-C(19)	-0.26(18)
C(2)-N(2)-C(10)-C(15)	141.67(12)	C(16)-C(17)-C(18)-C(19)	0.4(2)
C(3)-N(1)-C(1)-Pd(1)	178.00(8)	C(17)-C(18)-C(19)-C(20)	-0.5(2)
C(3)-N(1)-C(1)-N(2)	-0.25(12)	C(18)-C(19)-C(20)-N(3)	0.4(2)
C(3)-N(1)-C(4)-C(5)	-36.53(16)	C(20)-N(3)-C(16)-C(17)	0.16(19)
C(3)-N(1)-C(4)-C(9)	143.65(11)		

Table S17. Dihedral angles for 4c, 4a2 and $4c(^{\circ})$.

	Plane 1	Plane 2	Angle
4a1	N1, N2, C1, C2, C3	C4C9	56.67(5)
	N1, N2, C1, C2, C3	C10C15	63.02(5)
	N1, N2, C1, C2, C3	Pd1, Cl1, Cl2, C1, N3	76.66(4)
	Pd1, Cl1, Cl2, C1, N3	N3, C16C20	29.28(5)
	Pd1, Cl1, Cl2, C1	Pd1, Cl1, Cl2, N3	8.09(5)
4a2	N1A, N2A, C1A, C2A, C3A	C4AC9A	59.19(6)
	N1A, N2A, C1A, C2A, C3A	C10AC15A	52.38(7)
	N1A, N2A, C1A, C2A, C3A	Pd1A, Cl1A, Cl2A, C1A, N3A	82.75(5)
	Pd1A, Cl1A, Cl2A, C1A, N3A	N3A, C16AC20A	45.68(5)
	Pd1A, Cl1A, Cl2A, C1A	Pd1A, Cl1A, Cl2A, N3A	2.50(9)
	N1B, N2B, C1B, C2B, C3B	C4BC9B	50.55(7)
	N1B, N2B, C1B, C2B, C3B	C10BC15B	54.14(7)
	N1B, N2B, C1B, C2B, C3B	Pd1B, Cl1B, Cl2B, C1B, N3B	77.15(4)
	Pd1B, Cl1B, Cl2B, C1B, N3B	N3B, C16BC20B	44.5 (3)
	Pd1B, Cl1B, Cl2B, C1B	Pd1B, Cl1B, Cl2B, N3B	7.33(2)
4 c	N1, N2, C1, C2, C3	C4C9	38.23(4)
	N1, N2, C1, C2, C3	C10C15	38.30(4)
	N1, N2, C1, C2, C3	Pd1, Cl1, Cl2, C1, N3	70.87(3)
	Pd1, Cl1, Cl2, C1, N3	N3, C16C20	41.41(3)
	Pd1, Cl1, Cl2, C1	Pd1, Cl1, Cl2, N3	1.27(6)

Compound	Pd1	Cl1	Cl2	C1	N3
4a1	-0.0088(3)	-0.0807(3)	-0.0815(3)	0.0934(5)	0.0775(4)
4a2_A	-0.0212(4)	0.0372(4)	0.0370(4)	-0.0292(6)	-0.0238(5)
4a2_B	-0.0046(4)	0.0801(5)	0.0787(4)	-0.0827(7)	-0.0715(6)
4 c	0.0040(3)	0.0115(3)	0.0113(3)	-0.0144(5)	-0.0124(4)

Table S18. Atom deviations from the $PdCl_2CN$ plane (Å).

The core fragment $PdCl_2CN$ in **4a1** and in **4a2** (molecule *B*) is not entirely flat (Table S18): This fragment has a slightly bent conformation; $PdCl_2C$ -PdCl₂N folding angles are provided in Table S17.