Electronic Supporting Information to

Synthesis and structural characterisation of solid titanium(IV) phosphate materials by means of X-ray absorption and NMR spectroscopy

Daniela Rusanova-Naydenova,^{*a} Mylène Trublet,^b Wantana Klysubun,^c Chanakan Cholsuk,^c Dinu Iuga,^d Ray Dupree,^d Oleg N. Antzutkin^{d,e} and Ingmar Persson^{*f}

CONTENT (Figures and Tables)

Figure S1. Transmission absorption spectrum of α -TiP.

Figure S2. XRD diffractograms of LTP-H (sample 3), top pattern and LTP-Na (sample 5) down-pattern.

Figure S3. Fit of Fourier transforms of P K edge EXAFS data of titanium(IV) phosphates, experimental – coloured lines, models with structure parameters (in Table 4 *main article*) – red lines, sample 2- α -TiP (offset: 5), sample 1-TiP1 (offset: 4), sample 4- a-TiP (offset: 3), sample 3-LTP-H (offset: 2), sample 9-TiP1-mix (offset: 1), and sample 10-TiP1-mix-Ca (no offset). Data for samples 5-8 are not of sufficient quality for EXAFS data treatment.

Figure S4. Titanium K edge XANES spectra of titanium(IV) phosphates, sample 1-TiP1-H, sample 2- α -TiP, sample 3-LTP-H, sample 4 - a-TiP, sample 5 - LTP-Na, sample 6 - LTP-pro, sample 7-TiP1-Na and sample 9-TiP1-mix and sample 10-TiP1-mixCa (overlapping spectra of samples 9 and 10). (sample 8 - no data available).

Figure S5. Fit of the Ti pre-edge of sample LTP-H using linear regression of the model compounds α -TiP and TiP1-H, the model consisting of 63% and 37% of the α -TiP and TiP1-H pre-edge spectra, respectively is represented by the green line.

Figure S6. Fit of Fourier transforms of Ti *K* EXAFS data of titanium(IV) phosphates, experimental – coloured lines, models with structure parameters (in Table 3 *main article*) - red lines, sample 10-TiP1-mixCa, sample 9-TiP1-mix, sample 6-LTP_pro, sample 5-LTP-Na, sample 3-LTP-H, sample 4-aTiP and sample 2- α -TiP (sample 7 -data of insufficient quality, and no data available for sample 8).

Figure S7. A simulation of the 47,49 Ti NMR static spectrum of LTP-H. Experiment blue, simulation red. The 49 Ti NMR resonance of the large C_Q site is shown in green, that of the small C_Q site in mauve. The 47 Ti NMR resonance of the small C_Q site is shown in orange and that of the large C_Q site in blue. It was necessary to include the chemical shift anisotropy (CSA) in the simulation since using the shift and quadrupole parameters alone did not give a good fit to the spectrum for either of the contributions but because the lines are featureless there is considerable uncertainty in the precise CSA parameters. The parameters used are given in Table S3.

Table S1. Summary of crystalline titanium phosphate structures. The number before the chemical formula is the ICSD code in Inorganic Crystal Structure Database, *Inorganic Crystal Structure Database* 1.4.6, release 2021-2; FIZ Karlsruhe: Eggenstein-Leopoldshafen, Germany, 2021.

Table S2. Summary of powder XRD data (the first reflection and the corresponding d_{spacing}) for different TiP sorbents (samples 1-5) along with the reported analogous data for α -TiP and TiO(OH)(H₂PO₄)·**2**H₂O (TiP1-H).

Table S3/S4. ⁴⁹Ti and ⁴⁷Ti NMR simulation parameters and reported data.

FIGURES

Figure S1. X-ray transmission absorption spectrum of α -TiP.

Figure S2. XRD diffractograms of LTP-H (sample 3, top), and LTP-Na (sample 5, lower).

Figure S3. Fit of phosphorus K edge EXAFS data of titanium(IV) phosphates, experimental – coloured lines, models with structure parameters from Table 3, *main article* – red lines, sample 2- α -TiP (offset: 5), sample 1-TiP1-H (offset: 4), sample 4-a-TiP (offset: 3), sample 3-LTP-H (offset: 2), sample 9-TiP1-mix (offset: 1), and sample 10-TiP1-mix-Ca (no offset). Data for samples 5-8 are not of sufficient quality.

Figure S4. Titanium K edge XANES spectra of titanium(IV) phosphates, sample 1-TiP1-H, sample 2- α -TiP, sample 3-LTP-H, sample 4-a-TiP, sample 5-LTP-Na, sample 6-LTP-pro, sample 7-TiP1-Na and sample 9-TiP1-mix and sample 10-TiP1-mixCa (overlapping spectra of samples 9 and 10). (samples 8 - no data available).

Figure S5. Fit of the Ti pre-edge of sample LTP-H using linear regression of the model compounds α -TiP and TiP1-H, the model consisting of 63% and 37% of the α -TiP and TiP1-H pre-edge spectra, respectively, is represented by the green line (nearly overlapped with the grey-line of LTP-H).

Figure S6. Fit of Fourier transforms of Ti K EXAFS data of titanium(IV) phosphates, experimental – coloured lines, models with structure parameters (in Table 3, *main article*) - red lines, s sample 2 - α -TiP, sample 1 – TiP1-H, sample 4 – aTiP, sample 3- LTP-H, sample 5 – LTP-Na, sample 6 – LTP_pro, sample 9 – TiP1-mix, and sample 10 – TiP1-mixCa, (sample 7 - data of insufficient quality, and no data for sample 8).

Figure S7. A simulation of the static spectrum of LTP-H. Experiment blue, simulation red. The ⁴⁹Ti resonance of the large C_Q site is shown in green, that of the small C_Q site in mauve. The ⁴⁷Ti resonance of the small C_Q site is shown in orange and that of the large C_Q site in light-blue. It was necessary to include the chemical shift anisotropy (CSA) in the simulation since using the shift and quadrupole parameters alone did not give a good fit to the spectrum for either of the contributions but because the lines are featureless there is considerable uncertainty in the precise CSA parameters and in the Euler angles. The parameters used in the simulation are given in Table S3.

Table S1. Summary of crystalline titanium phosphate structures. The number before the chemical formula is the ICSD code in Inorganic Crystal Structure Database, *Inorganic Crystal Structure Database* 1.4.6, release 2021-2; FIZ Karlsruhe: Eggenstein-Leopoldshafen, Germany, 2021.

68886 Ti(HPO₄)₂·H₂O (α-TiP)

A. N. Christensen, E. Krogh Andersen, I. G. Krogh Andersen, G. Alberti, M. Nielsen and M. S. Lehmann, X-ray powder diffraction study of layer compounds. The crystal structure of α -Ti(HPO₄)₂·H₂O and a proposed structure for γ -Ti(H₂PO₄)(PO₄)·2H₂O. *Acta Chem. Scand.*, 1990, **44**, 865-872. Unit cell: *P2*₁/*c*; *a*=8.630(2), *b*=5.006(1), *c*=16.189(3) Å, β =110.20(1) °. O-Ti-O bond angles within TiO₆ unit: 84.576-94.808, 173.674-176.736 °.

Ti-O: 1.911, 1.944, 2.016, 2.032, 2.041, 2.062/**2.001 Å** Ti···O: 3.527, 3.596, 3.661, 3.708, 3.846, 3.981, 4.017 Ti···P: 3.127, 3.191, 3.334, 3.420, 3.469/**3.308 Å** Ti···Ti: 4.880, 4.961, 5.006, 5.006, 5.079, 5.157/

P-O: 1.384, 1.443, 1.444, 1.770/**1.510 Å** P···O: 3.375, 3.398, 3.492, 3.654, 3.671, 3.695, 3.822, 3.837, 3.893, 3.922, 3.933, 3.983, 3.989 P···Ti: 3.334, 3.420/**3.377 Å**

79193 Ti(HPO₄)₂·H₂O (α-TiP)

S. Bruque, M. A. G. Aranda, E. R. Losilla, P. Olivera-Pastor and P. Maireles-Torres, Synthesis optimization and crystal structures of layered metal(IV) hydrogen phosphates, α -M(HPO₄)₂·(H₂O) (M=Ti,Sn,Pb). *Inorg. Chem.*, 1995, **34**, 893-899. Unit cell: *P2*₁/*n*; *a*=8.6403(2), *b*=5.0093(1), *c*=15.5097(4) Å, β =101.324(2) °. O-Ti-O bond angles within TiO₆ unit: 85.863-93.572, 173.938-178.352 °.

Ti-O: 1.844, 1.918, 1.927, 1.968, 1.991, 2.026/**1.952 Å** Ti···O: 3.532, 3.605, 3.647, 3.663, 3.792, 3.844, 4.063 Ti···P: 3.251, 3.266, 3.290, 3.291, 3.325, 3.337**3.293 Å** Ti···Ti: 4.995, 5.009, 5.009, 5.020, 5.039

P-O: 1.442, 1.471, 1.514, 1.530/1.505, 1.570, 1.572, 1.581/**1.523 Å** P···O: 3.243, 3.358, 3.500, 3.516, 3.651, 3.709, 3.714, 3.751, 3.763, 3.906, 4.045 P···Ti: 3.251, 3.266, 3.290, 3.291, 3.325, 3.337

82458 Ti(HPO₄)₂·H₂O (α -TiP, neutron diffraction)

M. A. Salvado, P. Pertierra, S. Garcia Granda, J. R. Garcia, J. Rodriguez and M. T. Fernandez Diaz, Neutron powder diffraction study of α -Ti(HPO₄)₂·(H₂O) and α -Hf(HPO₄)₂·(H₂O); H-atom positions. *Acta Crystallogr., Sect. B*, 1996, **52**, 896-898. Unit cell: *P2*₁/*c*; *a*=8.6110(3), *b*=4.9933(2), *c*=16.1507(7) Å, β =110.206(3) °. O-Ti-O bond angles within TiO₆ unit: 85.661-95.968, 171.380-177.311 °.

Ti-O: 1.835, 1.886, 1.911, 1.940, 1.960, 1.961/**1.916 Å** Ti···O: 3.535, 3.546, 3.611, 3.754, 3.835, 3.841, 4.125 Ti···P: 3.218, 3.275, 3.286, 3.297, 3.314, 3.377/**3.295 Å** Ti···Ti: 4.920, 4.984, 4.991, 4.993, 4.993, 5.054**/4.989 Å**

P-O: 1.501, 1.551, 1.560, 1.563/1.527, 1.559, 1.575, 1.586/**1.553 Å** P···O: 3.221, 3.294, 3.517, 3.555, 3.587, 3.614, 3.634, 3.695, 3.737, 3.839, 4.035 P···Ti: 3.218, 3.275, 3.286, 3.297, 3.314, 3.377

174475 Ti(HPO₄)₂·H₂O (α-TiP)

V. A. Burnell, J. E. Readman, C. C. Tang, J. E. Parker, S. P. Thompson and J. A. Hriljac, Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titanium-zirconium phosphates. *J. Solid State Chem.*, 2010, **183**, 2196-2204. Unit cell: $P2_1/c$; *a*=8.63267(6), *b*=5.00672(3), *c*=16.1902(2) Å, β =110.2065(6) °. O-Ti-O bond angles within TiO₆ unit: 86.774-93.949, 175.171-178.966 °.

Ti-O: 1.907, 1.941, 1.941, 1.945, 1.962, 1.969/**1.944 Å** Ti···O: 3.569, 3.586, 3.680, 3.739, 3.800, 3.825, 4.082 Ti···P: 3.233, 3.287, 3.290, 3.291, 3.312, 3.322/**3.289 Å** Ti···Ti: 4.970, 4.988, 5.007, 5.007, 5.018, 5.036/

P-O: 1.470, 1.490, 1.569, 1.584/1.467, 1.512, 1.523, 1.582/**1.525 Å** P···O: 3.240, 3.374, 3.501, 3.604, 3.610, 3.654, 3.663, 3.736, 3.759, 3.874, 3.990 P···Ti: 3.233, 3.287, 3.322/3.290, 3.291, 3.312

51099 Ti(PO₄)(H₂PO₄)·H₂O (β-TiP)

A. M. Krogh Andersen, P. Norby and T. Vogt, Determination of formation regions of titanium phosphates; determination of the crystal structure of beta-titanium phosphate, $Ti(PO_4)(H_2PO_4)$ from neutron powder data. *J. Solid State Chem.*, 1998, **140**, 266-271. Unit cell: $P2_1/n$: *a*=18.9502(4), *b*=6.3126(1), *c*=5.1392(1) Å, β =105.366(2) °. O-Ti-O bond angles within TiO_6 unit: 84.355-96.480, 170.399-177.839 °.

Ti-O: 1.910, 1.921, 1.927, 1.936, 1.942, 1.955/**1.932 Å** Ti···O: 3.634, 3.701, 3.758, 3.763, 3.798, 3.826, 3.873, 3.973, 3.991, 4.104 Ti···P: 3.160, 3.270, 3.284, 3.340, 3.413, 3.420/**3.315 Å** Ti···Ti: 5.030, 5.030, 5.139, 5.139, 5.151, 5.151

P-O: 1.485, 1.581, 1.602, 1.629/1.487, 1.507, 1.513, 1.582/**1.548 Å** P···O: 3.312, 3.314, 3.430, 3.440, 3.526, 3.702, 3.792, 3.863, 3.903, 3.929, 3.996, 4.015 P···Ti: 3.160, 3.270, 3.284, 3.340, 3.413, 3.420

174341 Ti(PO₄)(H_2PO_4)· H_2O (β-TiP)

S. Garcia Granda, S. A. Khainakov, A. Espina, J. R. Garcia, G. R. Castro, J. Rocha and L. Mafra, Revisiting the thermal decomposition of layered γ -titanium phosphate and structural elucidaton of its intermediate phase. *Inorg. Chem.*, 2010, **49**, 2630-2638. Unit cell: *P2*₁: *a*=5.036, *b*=6.264, *c*=23.67 Å, β =102.41 °. O-Ti-O bond angles within TiO₆ unit: 80.143-106.546, 160.249-178.803 °.

Ti-O: 1.839, 1.899, 1.912, 1.962, 1.969, 2.059/1.755, 1.823, 1.968, 1.990, 1.993, 2.036/**1.938** Å Ti···O: 3.606, 3.618, 3.627, 3.809, 3.829, 3.882, 3.889, 3.900, 3.960, 3.989, 4.017 Ti···P: 3.236, 3.239, 3.260, 3.263, 3.310, 3.318, 3.409, 3.461/**3.312** Å Ti···Ti: 4.983, 4.983, 5.036, 5.036, 5.146, 5.146**/5.106** Å

P-O: 1.492, 1.504, 1.510, 1.512/1.492, 1.504, 1.531, 1.546/1.494, 1.498, 1.499, 1.512/1.545, 1.553, 1.563, 1.581/**1.521 Å** P···O: 3.315, 3.394, 3.439, 3.567, 3.599, 3.774, 3.851, 3.867, 3.878, 3.883, 3.889, 3.935, 3.995 P···Ti: 3.236, 3.239, 3.260, 3.263, 3.310, 3.318, 3.409, 3.461

174340 Ti(PO₄)(H₂PO₄)·2H₂O (γ-TiP)

S. Garcia Granda, S. A. Khainakov, A. Espina, J. R. Garcia, G. R. Castro, J. Rocha and L. Mafra, Revisiting the thermal decomposition of layered γ -titanium phosphate and structural elucidaton of its intermediate phase. *Inorg. Chem.*, 2010, **49**, 2630-2638. Unit cell: *P2*₁; *a*=5.1811(2), *b*=6.3479(2), *c*=23.725(2) Å, β =102.57(1) °.

O-Ti-O bond angles within TiO₆ unit: 76.072-102.325, 153.977-177.757°.

Ti-O: 1.888, 1.922, 1.937, 1.966, 2.166, 2.284/1.832, 1.870, 1.902, 1.911, 1.946, 1.967/**1.966 Å** Ti···O: 3.544, 3.617, 3.704, 3.710, 3.940, 3.960, 3.990, 3.994, 4.000 Ti···P: 3.224, 3.283, 3.327, 3.332, 3.380, 3.403, 3.413, 3.414, 3.443/**3.354 Å** Ti···Ti: 5.040, 5.040, 5.146, 5.146, 5.181, 5.181/**5.122 Å**

P-O: 1.470, 1.523, 1.546, 1.554/1.527, 1.556, 1.623, 1.652/1.472, 1.493, 1.519, 1.574/1.544, 1.613, 1.622, 1.793/**1.568 Å** P···O: 3.291, 3.343, 3.355, 3.621, 3.730, 3.730, 3.908, 3.919, 3.922, 3.940, 3.942, 3.969 P···Ti: 3.323, 3.224, 3.283, 3.327, 3.332, 3.380, 3.403, 3.413, 3.414, 3.443

84307 Ti₂O(PO₄)₂·2H₂O

M. A. Salvado, P. Pertierra, S. Garcia Granda, J. R. Garcia, M. T. Fernandez Diaz and E. Dooryhee, Crystal structure, including H-atom positions, of $Ti_2O(PO_4)_2(H_2O)_2$ determined from synchrotron X-ray and neutron powder data. *Eur. J. Solid State Inorg. Chem.*, 1997, **34**, 1237-1247.

Ti-O: 1.854, 1.910, 1.929, 1.957, 1.975, 2.019/1.764, 1.875, 1.875, 2.016, 2.136, 2.220/**1.961 Å** Ti···O: 3.552, 3.670, 3.756, 3.800, 3.803, 3.855, 3.887, 3.972 Ti···P: 3.199, 3.288, 3.300, 3.301, 3.307, 3.319, 3.345, 3.389/**3.306 Å** Ti···Ti: 3.484, 5.111, 5.113, 5.115, 5.115, 5.148, 5.180

P-O: 1.486, 1.510, 1.553, 1.577/1.490, 1.501, 1.528, 1.533/**1.522 Å** P···O: 3.333, 3.423, 3.508, 3.645, 3.673, 3.744, 3.777, 3.840, 3.846, 3.915, 3.947, 3.952, 3.958 P···Ti: 3.199, 3.288, 3.300, 3.301, 3.307, 3.319, 3.345, 3.389

84861 Ti₂O(PO₄)₂·2H₂O

D. M. Poojary, A. I. Bortun, L. N. Bortun and A. Clearfield, Synthesis and X-ray powder structures of three novel titanium phosphate compounds. *J. Solid State Chem.*, 1997, **132**, 213-223.

Ti-O: 1.823, 1.928, 1.928, 1.962, 2.042, 2.138/1.942, 1.961, 1.961, 2.005, 2.030, 2.035/**1.980 Å** Ti···O: 3.581, 3.584, 3.804, 3.895, 3.980 Ti···P: 3.218, 3.240, 3.255, 3.275, 3.284, 3.381, 3.383, 3.387/**3.303 Å** Ti···Ti: 3.567, 5.063, 5.087, 5.089, 5.092, 5.109, 5.109

P-O: 1.497, 1.511, 1.521, 1.615/1.494, 1.532, 1.545, 1.579/**1.537 Å** P···O: 3.253, 3.467, 3.598, 3.621, 3.745, 3.753, 3.762, 3.766, 3.779, 3.849, 3.967, 3.971, 3.983, 4.001 P···Ti: 3.218, 3.240, 3.255, 3.275, 3.284, 3.381, 3.383, 3.387

160167 Ti₂O(PO₄)₂·H₂O

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, M. Menetrier and F. Bouree, New process of preparation, structure and physicochemical investigations of the new titanyl phosphate Ti₂O(H₂O) (PO₄)₂. *J. Solid State Chem.*, 2007, **180**, 2713-2722. Ti-O: 1.840, 1.873, 1.886, 1.921, 1.957, 2.281/1.779, 1.848, 1.910, 1.959, 2.045, 2.264/**1.964 Å** Ti…O: 3.533, 3.745, 3.822, 3.839, 3.906, 3.953, 3.972, 4.030 Ti…P: 3.232, 3.242, 3.302, 3.401/3.131, 3.183, 3.354, 3.393/**3.280 Å** Ti…Ti: 3.473, 4.193, 4.981, 4.981, 4.990, 5.017, 5.181, 5.207, 5.217, 5.217

P-O: 1.452, 1.547, 1.580, 1.584/1.510, 1.519, 1.544, 1.589/**1.541 Å** P···O: 3.291, 3.343, 3.355, 3.621, 3.730, 3.730, 3.908, 3.919, 3.922, 3.940, 3.942, 3.969 P···Ti: 3.232, 3.242, 3.302, 3.401/3.131, 3.183, 3.354, 3.393

174339 Ti₂(PO₄)₂(H₂P₂O₇)(H₂O)

S. Garcia Granda, S. A. Khainakov, A. Esina, J. R. Garcia, G. R. Castro, J. Rocha and L. Mafra, Revisiting the thermal decomposition of layered gamma-titanium phosphate and structural elucidation of its intermediate phase. *Inorg. Chem.*, 2010, **49**, 2630-2638.

Ti-O: 1.781, 1.912, 1.935, 1.956, 2.009, 2.201/**1.964 Å** Ti···O: 3.438, 3.550, 3.582, 3.605, 3.621, 3.636, 3.639, 3.758, 3.824, 3.828, 3.995, 4.006**/3.707 Å** Ti···P: 3.232, 3.242, 3.302, 3.401/3.131, 3.183, 3.354, 3.393**/3.343 Å**

163900 $(Ti_{1.5}(H_2O)_2(PO_4)(HPO_4)(H_2PO_4)_{0.5}) \cdot H_2O$

Y. Zhao, J. Yu, Y.-U. Kwon, Syntheses and structures of two reduced open-framework titanophosphates. *Bull. Korean Chem. Soc.*, 2008, **29**, 805-810.
Ti-O: (1.977, 1.978, 1.994, 1.994, 2.109, 2.110), (1.868, 1.914, 1.929, 1.944, 1.947, 1.961)/ (2.027 1.927/1.977 Å

Ti…P: 3.259, 3.284, 3.300, 3.305, 3.318, 3.362, 3.342, 3.414, 3.342, 3.355, 3.355/**3.331 Å**

Table S2. Summary of powder XRD data (the first reflection and the corresponding d_{spacing}) for different TiP sorbents (samples 1-5) along with the reported analogous data for α -TiP and TiO(OH)(H₂PO₄)·**2**H₂O.

Sample No/colour code	Abbreviation	Chemical substance	рXRD 2 Ө, degree	pXRD d, Å	Ref
Sample 1 / purple	TiP1 / TiP-H	TiO(OH)(H₂PO₄)·H₂O	8.5	10.4	1, 2
Sample 2 / red-brownish	Alpha-TiP / αTiP	α -Ti(HPO ₄) ₂ ·H ₂ O	11.6	7.6	1
Sample 3 / grey	LTP / LTP-H	Linked units (TiP1 and	8.8	10.0	3
		α-TiP)	11.7	7.5	
Sample 4 / light-blue	amorphous TiP /	Different TiP units			
	aTiP	present	Featureless	-	2
Sample 5 / yellow	LTP-Na	Na-exchanged LTP-H	10.5	8.4	3 (ESI- Fig.
					S1)
α - Ti(HPO ₄) ₂ ·H ₂ O			11.6	7.6	4
TiO(OH)(H ₂ PO ₄)·2H ₂ O			8.8	10.0	5

References to Table S2

- 1. M. Trublet, D. Rusanova and O. N. Antzutkin, Revisiting syntheses of Ti(IV)/H₂PO₄-HPO₄ functional ion-exchangers, properties and features. *New J. Chem.*, 2018, **42**, 838– 845.
- 2. M. Trublet, M. V. Maslova, D. Rusanova and O. N. Antzutkin, Mild syntheses and surface characterization of amorphous TiO(OH)(H₂PO₄)·H₂O ion-exchanger. *Mater.Chem. Phys.*, 2016, **183**, 467-475.
- 3. M. Trublet and D. Rusanova, Complete Column Trials for Water Refinement Using Titanium(IV) Phosphate Sorbents. ACS Sustain. Chem. Eng., 2018, 6, 6157-6165.
- A. N. Christensen, E. K. Andersen, I. G. G. Andersen, G. Alberti, M. Nielsen and M. S. Lehmann, X-Ray Powder Diffraction Study of Layer Compounds. The Crystal Structure of α-Ti(HPO₄)₂·H₂O and a Proposed Structure for γ-Ti(H₂PO₄)(PO₄))·2H₂O. *Acta Chem. Scand.*, 1990, 44, 865–872.
- 5. Y. J. Li, M. S. Whittingham, Hydrothermal synthesis of new metastable phases: preparation and intercalation of a new layered titanium phosphate, *Solid State Ionics*, 1993, **63-65**, 391-395.

	⁴⁹ Ti	⁴⁹ Ti	⁴⁷ Ti	⁴⁷ Ti
	Site 1	Site 2	Site 1	Site 2
$\delta_{ m iso}$ (ppm)	-1105	-990	-1372	-1257
C _Q (MHz)	2.4	8.8	2.9	10.8
η	0.4	0.35	0.4	0.35
⊿ _{csa} (ppm)	30	300	30	300
η_{csa}	0.9	0.9	0.9	0.9
α	0	0	0	0
6	0	0	0	0
Y	0	0	0	0

Table S3. Simulation parameters used for the static ⁴⁹Ti and ⁴⁷Ti static NMR spectrum of LTP-H shown in Fig. S6.

 $\delta_{iso} = (\delta_{11} + \delta_{22} + \delta_{33})/3$, $\Delta_{csa} = \delta_{33} - \delta_{iso}$, $\eta_{csa} = (\delta_{11} - \delta_{22})/(\delta_{33} - \delta_{iso})$ The Euler angles (α , β , γ) describe the relative orientation of the CS tensor with respect to the EFG system.

Sample	Nucleus	$\delta_{ m iso}$ /ppm	⁴⁹ Ti / ⁹¹ Zr C _Q /MHz	$\eta_{ m Q}$	Ref.
TiP1-H	⁴⁹ Ti	-990 ± 10	8.4 ± 0.4	0.35 ± 0.1	
LTP-H	⁴⁹ Ti	-1105 ± 5	2.6 ± 0.2	0.4 ± 0.1	this work
LTP-H	⁴⁹ Ti	-990 ± 10	8.8 ± 0.4	0.35 ± 0.1	
alpha-TiP	⁴⁹ Ti	-820 ± 20	14.3 ± 0.5	0.05 ± 0.05	
beta- TiP	⁴⁹ Ti	-1130 ± 20	4.0 ± 0.2	0.8 ± 0.1	
<i>gamma-</i> TiP	⁴⁹ Ti	-1130 ± 20	4.9 ± 0.2	0.9 ± 0.1	1/2
<i>alpha</i> -Na-TiP	⁴⁹ Ti	-800 ± 20	13.5 ± 0.5	0.2 ± 0.05	
alpha-ZrP	⁹¹ Zr	- 385	5.80 (8.12)	0.27	
gamma-ZrP	⁹¹ Zr	-390	9.20 (12.88)	0.13	3
Na-ZrP, site1	⁹¹ Zr	-395	7.81 (10.93)	0.97	
Na-ZrP, site2	⁹¹ Zr	-400	6.55 (9.17)	0.99	

Table S4. ⁴⁹Ti NMR parameters for TiP1-H (sample 1, TiO(OH)(H_2PO_4)· H_2O) and LTP-H (sample 3) combined with reported data.

The values *in orange* correspond to the multiplied by 1.4 C_Q parameters (*example*: 5.80 x 1.4 = 8.12) in order for the C_Q parameters for TiP- materials to be compared to the analogous parameters for ZrP layered systems.

 $C_q = eq.eQ / h$ $eq = \partial^2 V / \partial z^2 = V_{--}$

$$V_{zz} = e \frac{3\cos^2 \theta - 1}{r^6}$$

The C_q depends on both the electric field gradient, written as eq (units V/m²) and the quadrupole moment eQ and to compare ⁹¹Zr with ⁴⁹Ti one needs to divide C_q by the ratio of the quadrupole moments.

 $eQ(^{49}\text{Ti}) = 24.7 \text{ x } 10^{-30} \text{ m}^2 \text{ and } eQ(^{47}\text{Ti}) = 30.2 \text{ x } 10^{-30} \text{ m}^2 \text{ and } eQ(^{91}\text{Zr}) = -17.6 \text{ x } 10^{-30} \text{ m}^2$ (see doi: 10.1016/S0009-2614(00)00031-2)

Ratio $eQ({}^{91}\text{Zr})/eQ({}^{49}\text{Ti}) = 17.6/24.7 = 0.71$, or multiple $C_q({}^{91}\text{Zr})$ by 1.4 to compare with $C_q({}^{49}\text{Ti})$.

References to Table S4

- 1. D. Padro, V. Jennings, M. E. Smith, R. Hoppe, P. A. Thomas and R. Dupree, Variations of Titanium Interactions in Solid State NMR Correlations to Local Structure, J. *Phys. Chem. B* 2002, **106**, 51, 13176–13185.
- J. Zhu, N. Trefiak, T. K. Woo, and Y. Huang, A ^{47/49}Ti Solid-State NMR Study of Layered Titanium Phosphates at Ultrahigh Magnetic Field, *J. Phys. Chem. C*, 2009, **113**, 23, 10029-10037.
- Z. Yan, C.W. Kirby, and Y. Huang, Directly Probing the Metal Center Environment in Layered Zirconium Phosphates by Solid-State ⁹¹Zr NMR, *J. Phys. Chem. C*, 2008, **112**, 23, 8575-8586.