Supporting Information

Luminescence Thermometry and Field Induced Slow Magnetic Relaxation based on a Near Infrared Emissive Heterometallic Complex.

Karachousos-Spiliotakopoulos, Konstantinos,^a Vassilis Tangoulis,^{*a**} Nicos Panagiotou,^{*b*} Anastasios Tasiopoulos,^{*b*} Eufemio Moreno-Pineda,^{*c*} Wolfgang Wernsdorfer,^{*d*,*e**} Michael Schulze,^{*e*} Alexandre M. P. Botas,^{*f*} Luis D. Carlos,^{*f**}

- a. Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504, Patras, Greece.
- b. Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
- c. Depto. de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá.
- d. Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
- e. Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.
- f. Phantom-g, CICECO Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal

FT-IR

Figure S1. IR spectra of $1.4H_2O$ in the range 4000-400 cm⁻¹. Enlarged regions (1600- 400) cm⁻¹ and (2200-2080) cm⁻¹ are also presented. The bands in the 1560-1420 cm⁻¹ region (highlighted region on the left) are assigned to the stretching vibrations of the heterocyclic rings of coordinated bpyO2.

Crystal Packing

Figure S2. a) A layer of the 3D architecture of compound 1 parallel to the *ab* plane. The O-H···O/N intermolecular H bonds connecting the molecules in the layer are shown in blue and red dotted lines; hanging contacts to atoms on adjacent layers are drawn with red dotted lines. c) interconnected layers through the lattice solvent H_2O molecules (oxygens are denoted as red solid spheres). The hydrogens of the solvent molecules have not been located.

Magnetic measurements

Figure S3. (a) $\chi_M T$ profile for 1 collected with $H_{DC} = 1$ kOe and (b) M(H) at different temperatures. Solid lines are simulation obtained employing CASSCF results (see text for details).

Figure S4. In-phase frequency dependent $(\chi'(\nu))$ magnetic susceptibility for 1 obtained with an oscillating field of 3.5 Oe and $H_{DC} = 1.25$ kOe in the temperature range of 2 to 5.2 K and employing frequencies between 1 to 1.512 Hz.

ure S5. (a) In-phase temperature dependent ($\chi'(T)$) magnetic susceptibility and (b) ($\chi'T(T)$) for 1 obtained employing an oscillating field of 3.5 Oe and $H_{DC} = 1.25$ kOe.

Luminescence Thermometry

The relative thermal sensibility (S_r) and the temperature uncertainty (δT) are defined as:¹

$$S_r = \frac{1}{\Delta} \left| \frac{\partial \Delta}{\partial T} \right|$$
 and $\delta T = \frac{1}{S_r} \left| \frac{\delta \Delta}{\Delta} \right|$ (S1)

δΔ

where $\overline{\Delta}$ is the relative uncertainty in Δ . The temperature uncertainty was obtained considering the experimental uncertainty associated with the thermometric parameter as:

$$(\delta\Delta)^2 = \left(\frac{\partial\Delta}{\partial I_1}\delta I_1\right)^2 + \left(\frac{\partial\Delta}{\partial I_2}\delta I_2\right)^2 = \Delta^2 \left[\left(\frac{\delta I_1}{I_1}\right)^2 + \left(\frac{\delta I_2}{I_2}\right)^2\right]$$
(S3)

where δI_1 and δI_2 are the uncertainties in I_1 and I_2 , respectively, determined considering the standard error ($SE = 1 \times 10^5$) of the mean value of the noise signal of the spectrum (measured at

16 K in the 5882-8000 cm^{-1} range), taken $SE = \frac{\sigma}{\sqrt{N}}$, where σ is the standard derivation and

N = 577 is the number of points.

Figure S6. Temperature dependence of (a) S_r and (b) δT .

 C. D. S. Brites, A. Millán, L. D. Carlos, Lanthanides in Luminescent Thermometry. In Handbook on the Physics and Chemistry of Rare Earths, Gshneidner, K. A.; Bünzli, J.-C.; Pecharsky, V., Eds. Elsevier: 2016; Vol. 48, pp 339-427.

Crystallographic Data

Table S1. Crystallographic Data for Complex $1.4H_2O$,

Empirical formula	$C_{26}H_{16}CoN_{10}O_{11}Yb$
Formula weight	876.46
Temperature [K]	100(2)
Wavelength [Å]	0.71073
Crystal system	Triclinic
Space group	P -1
a [Å]	10.1974(4)
b [Å]	12.2711(5)
c [Å]	13.8414(5)
a [º]	85.275(3)
b [º]	87.856(3)
c [º]	70.730(4)
Volume [Å ³]	1629.33(12)
Ζ	2
Density (calculated)[g/cm ³]	1.786
Absorption coefficient [mm ⁻¹]	3.434
F(000)	854
Crystal size [mm ³]	0.120 x 0.075 x 0.055
Theta range for data collection [deg]	3.326 to 27.498
Reflections collected	23274
Independent reflections	7335 [R(int) = 0.0669]
Completeness to theta = 25.242°	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7335 / 0 / 442
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	$R_{obs}{}^{a} = 0.0388, wR_{obs}{}^{b} = 0.0797$
R indices (all data)	$R_{all} = 0.0480, wR_{all} = 0.0847$
Deposition Number	2159777

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR = \{\Sigma [w(|F_{o}|^{2} - |F_{c}|^{2})^{2}] / \Sigma [w(|F_{o}|^{4})]\}^{1/2} \text{ and } {}^{b}w = 1/[\sigma^{2}(F_{o}^{2}) + (mP)^{2} + nP] \text{ where } P = (Fo^{2} + 2Fc^{2})/3 \text{ and } m \text{ and } n \text{ are constants}$

Distance	
Yb…Co1	5.425(1)
O(1)-Yb(1)	2.346(3)
O(2)-Yb(1)	2.288(3)
O(3)-Yb(1)	2.361(3)
O(4)-Yb(1)	2.246(3)
O(5)-Yb(1)	2.325(3)
O(6)-Yb(1)	2.323(3)
O(7)-Yb(1)	2.323(3)
N(5)-Yb(1)	2.424(4)
Co1-C21	1.889(5)
Co1-C22	1.907(5)
Co1-C23	1.907(5)
Co1-C24	1.881(5)
Co1-C25	1.906(5)
Co1-C26	1.905(5)
Angle	
O1-Yb-O2	71.61(11)
O3-Yb-O4	74.27(11)
O5-Yb-O6	72.14(10)
O6-Yb-O7	144.45(11)
O2-Yb-N5	103.76(12)
O4-Yb-N5	88.92(13)
Yb-N5-C21	165.9(4)
C21-Co1-C26	177.80(19)
C22-Co1-C24	179.0(2)
C23-Co1-C25	178.3(2)
Co1-C21-N5	177.0(4)
Co1-C26-N10	178.6(4)

Table S2. Selected Interatomic Distances (Å) and Angles (deg) for $1.4H_2O$,

Table S3. Continuous Shape Measures (CShM) values for the potential coordination polyhedra
of the Ln ^{III} ion in the structure of complex $1.4H_2O$

CShM value	^a Symmetry	Polyhedron
1		
32.231	D_{8h}	Octagon
23.167	C_{7v}	Heptagonal pyramid
15.012	D_{6h}	Hexagonal bipyramid
11.809	O_h	Cube
2.350	D_{4d}	Square antiprism
0.929	D_{2d}	Triangular dodecahedron
12.316	D_{2d}	Johnson gyrobifastigium J26
28.752	D_{3h}	Johnson elongated triangular bipyramid J14
2.084	C_{2v}	Biaugmented trigonal prism J50
1.429	C_{2v}	Biaugmented trigonal prism
2.941	D_{2d}	Snub diphenoid J84
12.622	T_d	Triakis tetrahedron
25.220	D_{3h}	Elongated trigonal bipyramid

^{*a*} The polyhedron with the smallest CShM value (in bold) is the real coordination polyhedron of the Ln^{III} center in the complex.