Title: Electron transport through a (terpyridine)ruthenium metallosurfactant containing a redox-active aminocatechol derivative

Samudra Amunugama, Eyram Asempa, Ramesh Chandra Tripathi, Dakshika Wanniarachchi, Habib Baydoun, Peter Hoffman, Elena Jakubikova and Cláudio N. Verani

<u>Outline</u>

Figure S1. ¹H-NMR spectrum of 4'-(4-(octadecyloxy)phenyl)-2,2':6'2"-terpyridine (L^{terpy}) ligand

Figure S2. ¹H-NMR spectrum of 3,5-ditert-butyl-2-(phenylamino)catechol (L²_{H2}) ligand

Figure S3. Full ¹H-NMR spectrum of [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S4. ¹³C-NMR spectrum of [Ru(Lterpy)(L²)Cl]PF₆ 1

Figure S5. HSQC NMR spectrum of [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S6. Crystal structure of complex 1 with 50% probability

Figure S7: UV-visible spectrum of complex **1** in dichloromethane. Inset shows the magnification of 600-1600 nm region of the UV-visible spectrum

 Table T1. Crystal structure data and selected bond lengths for complex 1

 Table T2. Electrochemical data recorded in dichloromethane for complex 1

Figure S8. Triplicate measurements of isothermal compression for [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S9. Comparison of IRRAS spectrum of 57 layers of LB film and IR spectrum of $[Ru(L^{terpy})(L^2)CI]PF_6 \mathbf{1}$

Figure S10. Comparison of UV-vis spectrum of 57 layers of LB film and solution state UV-vis spectrum of $[Ru(L^{terpy})(L^2)Cl]PF_6 \mathbf{1}$ (b) Mass spectrum of $\mathbf{1}$ recovered from LB films

Figure S11. AFM height images for 9-monolayers of complex **1** deposited on quartz substrate (a) 3D view (b) sectional analysis

Figure S12. Geometric parameters for $[Ru(L^{terpy})(L^2)CI]PF_6 \mathbf{1}$ coordination environment

Table T3. Metal-ligand bond lengths for singlet, triplet, quintet, and septet states of the Ru complex optimized at the B3LYP+D3/SDD,6-311G* level of theory as well as crystal structure data. The values in parentheses correspond to the optimized values in dichloromethane (PCM solvent model).

Table T4. : Energetics for singlet, triplet, quintet, and septet states of Complex **1** in dichloromethane (PCM solvent model)

Figure S13. Calculated absorption spectrum with corresponding stick spectrum of $[Ru(L^{terpy})(L^2)CI]PF_6 \mathbf{1}$

Table T5. Calculated Electrochemical data for Ru aminocatechol in dichloromethane (PCM solvent model)

Figure S14. Singly-occupied natural orbitals of the oxidized and reduced species of $[Ru(L^{terpy})(L^2)CI]PF_6 \mathbf{1}$ in dichloromethane

Figure S15. I-V characteristics for [Ru(L^{terpy})(L²)Cl]PF₆ **1** in five devices

Figure S1: ¹H-NMR spectrum of 4'-(4-(octadecyloxy)phenyl)-2,2':6'2"-terpyridine (L^{terpy}) ligand

Figure S2: ¹H-NMR spectrum of 3,5-ditert-butyl-2-(phenylamino)catechol (L²_{H2}) ligand

Figure S3: Full ¹H-NMR spectrum of [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S5: HSQC NMR spectrum of [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S6: Crystal structure of complex 1 with 50% probability

	1		
Formula	$C_{57}H_{64.7}CIF_6N_4O_2PRu$		
FW	1157.66		
Space group	P-1		
a(A°)	12.8026(6)		
b(A°)	15.0623(8)		
c(A°)	19.8264(10)		
α(deg)	68.182(3)		
B(deg)	88.474(3)		
γ(deg)	66.262(3)		
V(A°) ³	3214.9(3)		
Z	2		
Temp(K)	100		
λ(A°)	0.71073		
ρ(g m ⁻³)	1.196		
µ(mm⁻¹)	0.368		
R(F)(%)	5.60		
Rw(F)(%)	14.2		

Table T1: Crystal structure data and selected bond lengths for complex 1

Bond length(A°)	1		
Ru-N1	1.972(2)		
Ru-N2	2.073(3)		
Ru-N3	2.068(2)		
Ru-O8	2.0365(19)		
Ru-N33	1.971(2)		
Ru-Cl	2.3875(7)		
C40-N33	1.347		
C41-08	1.281		
C40-C41	1.444		
C41-C42	1.443		
C42-C47	1.362		
C47-C48	1.438		
C48-C53	1.366		
C53-C40	1.412		
Diameter(C31-C13)	10.244		
Area(A°) ² (Circular)	82.45		
Volume	2042		
Length (C46-C10)	24.768		

Figure S7: UV-visible spectrum of complex **1** in dichloromethane. Inset shows the magnification of 600-1600 nm region of the UV-visible spectrum

Peak Assignment	E _{1/2} (ΔΕ _Ρ)/V	E _{1/2} (ΔΕ _Ρ)/V	E _{1/2} (ΔE _P)/V	E _{1/2} (ΔE _P)/V
	I _{Pa} /I _{pc}	Ι _{Ρα} /Ι _{Ρς}	I _{pa} /I _{pc}	I _{pa} /I _{pc}
Complex 1	0.76 (90) 1.18	-0.76 (72) 0.95	-1.60 (74) 1.11	-2.20

 Table T2: Electrochemical data recorded in dichloromethane for complex 1

Figure S8: Triplicate measurements of isothermal compression for [Ru(L^{terpy})(L²)Cl]PF₆ 1

Figure S9: Comparison of IRRAS spectrum of 57 layers of LB film and IR spectrum of $[Ru(L^{terpy})(L^2)CI]PF_6 \mathbf{1}$

Figure S10: (a) Comparison of UV-vis spectrum of 57 layers of LB film and solution state UV-vis spectrum of complex **1** (b) Mass spectrum of **1** recovered from LB films

Figure S11: AFM height images for 9-monolayers of complex **1** deposited on quartz substrate (a) 3D view (b) sectional analysis

Figure S12: Geometric parameters for $[Ru(L^{terpy})(L^2)CI]PF_6 1$ coordination environment

Table T3: Metal-ligand bond lengths for singlet, triplet, quintet, and septet states of the Ru complex optimized at the B3LYP+D3/SDD,6-311G* level of theory as well as crystal structure data. The values in parentheses correspond to the optimized values in dichloromethane (PCM solvent model).

Bond lengths (Å)	Experimental	Singlet	Triplet	Quintet	Septet
Ru-Cl	2.39	2.42	2.39	2.32	2.31
Ru-N ₁	2.07	2.08	2.09	2.08	2.08
Ru-N ₂	1.97	1.97	2.00	1.94	1.95
Ru-N ₃	2.07	2.09	2.08	2.09	2.08
Ru-N ₄	1.97	1.98	2.03	2.05	2.05
Ru-O	2.04	2.07	2.02	2.04	2.03

Table T4: Energetics for singlet, triplet, quintet, and septet states of Complex 1 indichloromethane (PCM solvent model)

Spin states	Relative ∆E (kcal/mol)		
Singlet	0.00		
Triplet	10.60		
Quintet	57.49		
Septet	119.02		

Figure S13: Calculated absorption spectrum with corresponding stick spectrum of $[Ru(L^{terpy})(L^2)Cl]PF_6 \mathbf{1}$

Table 5: Calculated Electrochemical data for Ru aminocatechol in dichloromethane (PCM solver)
model)

Redox reactions	E (eV) vs	Assignment	E (eV) vs
	Fc/Fc		Fc/Fc
	(calculated)		(Experimental)
2+ +			
$[Ru(tpy)(O^N)CI] \stackrel{\frown}{\longrightarrow} [Ru(tpy)(O^N)CI] (S)$	0.95	Ru(IV/III)	0.76
$[Ru(tpy)(O^N)Cl]^{+}(S) \rightarrow [Ru(tpy)(O^N)Cl]^{0}(D)$	-0.65	quinone	-0.76
$[Ru(tpy)(O^N)Cl]^0(D) \rightarrow [Ru(tpy)(O^N)Cl]^{1-}(S)$	-2.07	catechol	-1.60
$[Ru(tpy)(O^N)Cl]^{-1}(S) \rightarrow [Ru(tpy)(O^N)Cl]^{2-}(D)$	-3.04	terpyridine	-2.22

** S is singlet and D is doublet

Figure 14: Natural orbitals of the oxidized and reduced species of $[Ru(L^{terpy})(L^2)CI]PF_6$ 1 in dichloromethane

Figure S15: I-V characteristics for [Ru(L^{terpy})(L²)Cl]PF₆ 1 in five devices

-0.3 -

-0.4

-0.15 -

