Supporting information

Exploring the synergistic effect of alloying toward hydrogen evolution reaction: a case study of Ni₃M (M = Ti, Ge and Sn) series

Dong Zhang^a, Shen-Jing Ji^a, Yu Cao^{*b} and Nian-Tzu Suen^{*a}

a College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
b College of Environmental Science and Engineering, Chemistry & Chemical Engineering,
Yangzhou University, Yangzhou 225000, China

^{*}Corresponding author: Yu Cao (<u>yucao@yzu.edu.cn)</u>, Nian-Tzu Suen (006641@yzu.edu.cn)

Figure S1. Experimental powder XRD patterns of Ni_3M (M = Ti, Ge and Sn). The simulated pattern and difference between experimental pattern and simulated one was attached below. The refined lattice constants and interatomic distances were tabulated in Table S1.

Figure S2. SEM image and EDX spectrum of Ni_3M (M = Ti, Ge and Sn); (a) Ni_3Ti , (b) Ni_3Ge and (c) Ni_3Sn . The atomic ratio between Ni and M element of each sample derived from EDX analysis was shown in Table S2.

Figure S3. (a) H₂ Standard Line (b) applied current density-dependent Faraday efficiency (FE, %) curves of Hydrogen products of electrocatalytic for Ni₃M (M = Ti, Ge and Sn).

Figure S4. Tafel plots derived from normalized LSV based on roughness factor (RF) of Ni₃M (M = Ti, Ge and Sn) and Ni foam at 1.0 M KOH (scan rate: 5 mV s⁻¹).

Figure S5. Electrochemical impedance spectroscopy (EIS) of Ni_3M (M = Ti, Ge and Sn) and Ni foam in 1.0 M KOH at -0.192 V (V vs RHE).

Figure S6. Cyclic voltammograms (CV) of Ni₃*M* (*M* = Ti, Ge and Sn) in 1.0 M KOH; (a) Ni₃Ti, (b) Ni₃Sn (c) Ni₃Ge and (d) Ni Foam. Capacitive current density as a function of scan rate (20 – 100 mV s⁻¹). The derived roughness factor (RF) of each compound from the linear regression slope (specific capacitance 40 μ F cm⁻²) is included at bottom.

Figure S7. X-ray photoelectron spectrum (XPS) in the region of Ni 2p for Ni₃M (M = Ti, Ge and Sn).

Figure S8. Chronoamperometry measurement of Ni_3M (M = Ti, Sn, Ge) series over a period of 12 hours in 1.0 M KOH.

Figure S9. (a) Experimental powder X-ray diffraction (PXRD) patterns and (b) X-ray photoelectron spectrum (XPS) in the region of Ni 2*p* for Ti₂Ni, TiNi, and Ni₃Ti (c) linear sweep voltammograms (LSV) and (d) normalized LSV based on roughness factor (RF) for Ti₂Ni, TiNi, and Ni₃Ti at 1.0 M KOH (scan rate: 5 mV s⁻¹).

formula	lattice constants		averaged Ni–Ni bond
			distance (Å)
	а	С	
Ni₃Ti	5.1017(1)	8.3076(1)	2.543
Ni₃Sn	5.288(1)	4.2416(1)	2.568
Ni₃Ge	3.5781(1)	3.5781(1)	2.530

Table S1. Refined lattice constants of Ni_3M (M = Ti, Sn, Ge) series

Sample	Element	Atomic ratio (%)
N: T:	Ni	71.33
111311	Ti	28.67
	Ni	78.28
MI3Ge	Ge	21.72
	Ni	73.45
INI32U	Sn	26.55