Supplementary Information for

Stable silylborane with diminished boron-Lewis acidity

Hiroto Yoshida,* Yuki Izumi, Yuta Hiraoka, Kazuki Nakanishi, Masaaki Nakamoto, Sayaka Hatano and Manabu Abe

Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.

e-mail: yhiroto@hiroshima-u.ac.jp

Table of Contents

1. General remarks S2
2. Synthesis of silylborane S2
3. Stability test of silylboranes under dried air conditions S3
4. Pt-catalyzed silylboration of alkynes: a general procedure S3
5. NOE experiments for determining stereochemistry S10
6. Direct cross-coupling of 3a S12
7. Copper-catalyzed reaction of 1 with 1-octyne S12
8. Copper-catalyzed reaction of 1 with 1-phenyl-1-propyne S13
9. X-ray crystallographic analyses S14
10. References S16
11. NMR spectra S17
General remarks
All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under an argon atmosphere. Nuclear magnetic resonance spectra were taken on a Varian System 500 (\(^1\)H, 500 MHz; \(^{13}\)C, 125 MHz; \(^{11}\)B, 186 MHz; \(^{31}\)P, 202 MHz) or a Varian 400MR (\(^1\)H, 400 MHz) spectrometer using residual chloroform (\(^1\)H, \(\delta = 7.26\)), CDCl\(_3\) (\(^{13}\)C, \(\delta = 77.16\)), or tetramethylsilane (\(^1\)H and \(^{13}\)C, \(\delta = 0\)) as an internal standard, and boron trifluoride diethyl etherate (\(^{11}\)B, \(\delta = 0.00\)) or 85% H\(_3\)PO\(_4\) (\(^{31}\)P, \(\delta = 0.00\)) as an external standard. \(^1\)H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. GC analysis was performed on a Shimadzu GC-2014 (GC conditions: Column: TC-1 (GL Science), 30 m \(\times\) 0.25 mm, film 0.25 \(\mu\)m; Flow rate: 1.89 mL/min; Injector temperature: 250 °C; Oven temperature: 100 °C to 250 °C at 20 °C/min, hold at 250 °C for 10 min; FID temperature: 250 °C). High-resolution mass spectra were obtained with a Thermo Fisher Scientific LTQ Orbitrap XL or JEOL JMS-T100GCV spectrometer. Preparative recycling gel permeation chromatography was performed with GL Science PU 614 equipped with Shodex GPC H-2001L and -2002L columns (toluene as an eluent). Column chromatography was carried out using Merck Kieselgel 60 or Florisil. Unless otherwise noted, commercially available reagents were used without purification. All solvents were dried over activated molecular sieve 4Å.

Synthesis of silylborane
PhMe\(_2\)Si–B(dan) (1)

![Structure of PhMe\(_2\)Si–B(dan)](image)

To a toluene (10 mL) solution of 1,8-diaminonaphthalene (0.633 g, 4.00 mmol) was added PhMe\(_2\)Si–B(Ni-Pr\(_2\))\(_2\)\(^1\) (1.43 g, 4.12 mmol) at room temperature, and the mixture was stirred at 125 °C for 6 h. Evaporation of volatile components followed by silica gel column chromatography (hexane as an eluent) gave 1 (0.967 g, 80% yield) as a pale yellow powder.

\(^1\)H NMR (500 MHz, Benzene-\(d_6\)) \(\delta\) 0.24 (s, 6H), 5.53 (s, 2H), 5.80 (dd, \(J = 7.2, 1.0\) Hz, 2H), 6.98 – 7.02 (m, 2H), 7.05 (dd, \(J = 8.3, 0.9\) Hz, 2H), 7.20 – 7.27 (m, 3H), 7.47 – 7.51 (m, 2H), 13\(^C\) NMR (126 MHz, Benzene-\(d_6\)) \(\delta\) -0.04, 106.26, 118.57, 121.45, 128.35, 128.46, 129.23, 134.55, 137.00, 139.08, 140.31.

\(^{11}\)B NMR (160 MHz, Benzene-\(d_6\)) \(\delta\) 33.08.

HRMS Calcd for C\(_{18}\)H\(_{30}\)BN\(_2\)Si : [M+H]\(^+\), 303.1483. Found: m/z 303.1491.
Stability test of silylboranes under dried air conditions

A flame dried Schlenk tube were charged with 1 (9.07 mg, 0.0300 mmol) and PhMe₂Si–B(pin) (7.87 mg, 0.0300 mmol), anisole (an internal standard, 9.73 mg, 0.0900 mmol) and benzene-d₆ (7 mL) under an argon atmosphere. A part of this solution (0.7 mL) was transferred to an NMR tube filled with dried air, and recovery of silylboranes was determined by ¹H NMR.

Pt-catalyzed silylboration of alkynes: a general procedure

A flame dried Schlenk tube were charged with Pt(PPh₃)₄ (2.49 mg, 2.00 µmol), an alkyne (0.150 mmol), 1,2-diethoxyethane (0.12 mL) and a silylborane (0.100 mmol, 1: 30.2 mg; PhMe₂Si–B(pin): 26.2 mg), and the mixture was stirred at 110 °C for 22 h. After the solvent was evaporated, the residue was purified by preparative recycling gel permeation chromatography (toluene as an eluent) to afford the product.

(Z)-2-(2-(dimethyl(phenyl)silyl)oct-1-en-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (3a)

Isolated in 73% yield as a pale yellow oil.

¹H NMR (500 MHz, Chloroform-d) δ 0.41 (s, 6H), 0.91 (t, J = 6.8 Hz, 3H), 1.26 – 1.41 (m, 6H), 1.49 (dt, J = 15.4, 7.2 Hz, 2H), 2.35 (t, J = 7.5 Hz, 2H), 5.33 (s, 2H), 5.89 (d, J = 7.2 Hz, 2H), 6.39 (s, 1H), 6.94 (d, J = 8.1 Hz, 2H), 7.01 (t, J = 8.1 Hz, 2H), 7.38 – 7.42 (m, 3H), 7.54 – 7.61 (m, 2H).

¹³C NMR (126 MHz, Chloroform-d) δ 14.03, 22.57, 29.17, 29.86, 31.69, 41.93, 105.39, 117.13, 119.40, 127.31, 128.17, 129.13, 133.75, 136.06, 140.46, 140.78, 158.81.

¹¹B NMR (160 MHz, Chloroform-d) δ 28.26.

HRMS Calcd for C₂₆H₃₄N₂BSi: [M+H]⁺, 413.2579. Found: m/z 413.2588.

A mixture of (Z)-2-(dimethyl(phenyl)silyl)-N,N-diethyl-3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)prop-2-en-1-amine (3b) and (E)-3-(dimethyl(phenyl)silyl)-N,N-diethyl-2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)prop-2-en-1-amine (3'b)

Isolated in 86% yield as a pale yellow oil.
1H NMR (500 MHz, Chloroform-d) δ 0.42 (s, 6H, minor), 0.45 (s, 6H, major), 1.04 (t, $J = 7.1$ Hz, 6H, major), 1.10 (t, $J = 7.1$ Hz, 6H, minor), 2.56 (q, $J = 7.0$ Hz, 4H), 3.26 (s, 2H), 5.37 (s, 2H, major), 5.85 (d, $J = 7.3$ Hz, 2H, minor), 5.98 (d, $J = 7.3$ Hz, 2H, major), 6.42 (s, 1H, minor), 6.54 (s, 2H, minor), 6.59 (s, 2H, minor), 6.92 (d, $J = 8.2$ Hz, 2H, minor), 6.97 (d, $J = 8.1$ Hz, 2H, major), 7.05 (t, $J = 8.1$ Hz, 2H), 7.36 – 7.38 (m, 3H, major), 7.45 – 7.47 (m, 3H, minor), 7.62 – 7.64 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 0.80, 0.14, 1.00, 11.10, 12.17, 45.91, 46.70, 65.53, 105.59, 105.71, 117.09, 117.45, 119.72, 120.35, 127.57, 128.16, 128.58, 129.21, 129.56, 133.13, 134.06, 134.23, 136.35, 136.49, 140.54, 140.99, 141.35.

1B NMR (127 MHz, Chloroform-d) δ 28.50.

HRMS Calcd for C$_{25}$H$_{33}$N$_3$BSi: [M+H]$^+$, 414.2531. Found: m/z 414.2543.

(Z)-2-(2-(dimethyl(phenyl)silyl)-3-(piperidin-1-yl)prop-1-en-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (3c)

Isolated in 59% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.44 (s, 6H), 1.48 (m, 2H), 1.57 – 1.64 (m, 4H), 2.37 (s, 4H), 3.08 (d, $J = 1.2$ Hz, 2H), 5.35 (s, 2H), 5.97 (dd, $J = 7.3$, 0.8 Hz, 2H), 6.39 (s, 1H), 6.92 (d, $J = 8.3$ Hz, 2H), 7.04 (t, $J = 8.2$ Hz, 2H), 7.36 – 7.39 (m, 3H), 7.64 – 7.69 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ -0.80, 0.14, 1.00, 11.10, 12.17, 45.91, 46.70, 65.53, 105.59, 105.71, 117.09, 117.45, 119.72, 120.35, 127.57, 128.16, 128.58, 129.21, 129.56, 133.13, 134.06, 134.23, 136.35, 136.49, 140.54, 140.99, 141.35.

1B NMR (160 MHz, Chloroform-d) δ 28.20.

HRMS Calcd for C$_{26}$H$_{32}$N$_3$BSi: [M+H]$^+$, 426.2531. Found: m/z 426.2541.

A mixture of (Z)-2-(2-(dimethyl(phenyl)silyl)-3-(phenylthio)prop-1-en-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (3d) and (E)-2-(2-(dimethyl(phenyl)silyl)-3-(phenylthio)prop-1-en-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (3”d)

Isolated in 83% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.51 (s, 6H, major), 0.54 (s, 6H, minor), 3.84 (s, 2H, major), 3.85 (s, 2H, minor), 5.14 (s, 2H, major), 5.88 (dd, $J = 7.2$, 1.1 Hz, 2H, major), 6.00 (s,
2H, minor), 6.19 (dd, J = 7.2, 1.0 Hz, 2H, minor), 6.24 (s, 2H, minor), 6.31 (s, J = 1.2 Hz, 2H, major), 6.96 (d, J = 8.3 Hz, 4H), 7.11 – 6.98 (m, 27H, major + minor), 7.45 – 7.20 (m, 2H), 7.62 (ddd, J = 10.8, 7.5, 2.5 Hz, 7H, major + minor).

13C NMR (126 MHz, Chloroform-d) δ -2.24, -0.97, 39.74, 46.06, 105.76, 105.98, 117.57, 117.67, 117.67, 119.68, 119.99, 126.63, 127.01, 127.54, 127.67, 128.01, 128.43, 128.92, 129.18, 129.39, 129.57, 130.65, 131.03, 134.20, 134.32, 136.12, 136.19, 136.28, 136.40, 137.72, 139.87, 140.73, 141.17, 150.98, 154.39.

11B NMR (160 MHz, Chloroform-d) δ 27.27.

HRMS Calcd for C$_{27}$H$_{28}$N$_2$BSSi: [M+H]$^+$, 451.1830. Found: m/z 451.1840.

(Z)-4-(2-(dimethyl(phenyl)silyl)-3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)allyl)morpholine (3e)

Isolated in 77% yield as a white powder.

1H NMR (500 MHz, Chloroform-d) δ 0.45 (s, 6H), 1.03 (d, J = 6.6 Hz, 12H), 3.08 (hept, J = 6.5 Hz, 2H), 3.34 (d, J = 1.6 Hz, 2H), 5.35 (s, 2H), 5.97 (d, J = 7.3 Hz, 2H), 6.92 – 6.99 (m, 3H), 7.04 (t, J = 7.8 Hz, 2H), 7.37 – 7.41 (m, 3H), 7.56 – 7.59 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 0.56, 20.88, 48.11, 54.05, 105.58, 117.30, 119.63, 127.57, 128.30, 129.26, 133.91, 136.34, 140.63, 141.14, 156.92.

11B NMR (160 MHz, Chloroform-d) δ 29.12.

HRMS Calcd for C$_{25}$H$_{31}$N$_3$OBSi: [M+H]$^+$, 428.2324. Found: m/z 428.2328.

(Z)-2-(dimethyl(phenyl)silyl)-N,N-diisopropyl-3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)prop-2-en-1-amine (3f)

Isolated in 66% yield as a colorless oil.

1H NMR (500 MHz, Chloroform-d) δ 0.45 (s, 6H), 1.03 (d, J = 6.6 Hz, 12H), 3.08 (hept, J = 6.5 Hz, 2H), 3.34 (d, J = 1.6 Hz, 2H), 5.35 (s, 2H), 5.97 (d, J = 7.3 Hz, 2H), 6.93 (s, 1H), 6.96 (d, J = 8.3 Hz, 2H), 7.04 (t, J = 7.8 Hz, 2H), 7.40 – 7.37 (m, 3H), 7.60 – 7.56 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 0.56, 20.88, 48.11, 54.05, 105.58, 117.30, 119.63, 127.57, 128.30, 129.26, 133.91, 136.34, 140.63, 141.14, 156.92.

11B NMR (160 MHz, Chloroform-d) δ 29.12.

HRMS Calcd for C$_{27}$H$_{31}$N$_3$OBSi: [M+H]$^+$, 442.2844. Found: m/z 442.2844.

(Z)-3-(dimethyl(phenyl)silyl)-N,N-diethyl-4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)but-3-en-1-amine (3g)
Isolated in 68% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.44 (s, 6H), 1.06 (t, $J = 7.2$ Hz, 6H), 2.47 – 2.52 (m, 4H), 2.55 – 2.63 (m, 4H), 5.34 (s, 2H), 5.91 (dd, $J = 7.3$, 1.0 Hz, 2H), 6.45 (s, 1H), 6.95 (dd, $J = 8.3$, 0.9 Hz, 2H), 7.02 (dd, $J = 8.2$, 7.3 Hz, 2H), 7.38 – 7.41 (m, 2H), 7.55 – 7.59 (m, 3H).

13C NMR (126 MHz, Chloroform-d) δ 12.06, 38.69, 47.04, 53.94, 105.71, 117.47, 119.67, 127.56, 128.44, 129.45, 134.01, 136.31, 140.32, 140.93, 156.79.

11B NMR (160 MHz, Chloroform-d) δ 28.38.

HRMS Calcd for $C_{26}H_{35}N_3BSi$: [M+H]$^+$, 428.2688. Found: m/z 428.2702.

diethyl (Z)-(4-(dimethyl(phenyl)silyl)-5-(1H-naphtho[1,8-de][1,3,2]diazaborin-2(3H)-yl)pent-4-en-1-yl)phosphonate (3h)

Isolated in 62% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.42 (s, 6H), 1.34 (t, $J = 7.1$ Hz, 6H), 1.75 – 1.85 (m, 4H), 2.42 (t, $J = 6.7$ Hz, 2H), 4.06 – 4.17 (m, 4H), 5.34 (s, 2H), 5.92 (d, $J = 7.2$ Hz, 2H), 6.41 (s, 1H), 6.95 (d, $J = 8.0$ Hz, 2H), 6.99 – 7.04 (t, 2H), 7.38 – 7.42 (m, 3H), 7.53 – 7.58 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 16.66 (d, $J = 6.0$ Hz), 22.49 (d, $J = 4.9$ Hz), 24.95, 26.07, 42.26 (d, $J = 16.6$ Hz), 61.62 (d, $J = 6.5$ Hz), 105.72, 117.48, 119.66, 127.54, 128.43, 129.45, 133.91, 136.28, 140.15, 140.88, 157.07.

11B NMR (160 MHz, Chloroform-d) δ 28.27.

31P NMR (202 MHz, Chloroform-d) δ 32.54.

HRMS Calcd for $C_{27}H_{37}N_2BO_3SiP$: [M+H]$^+$, 507.2399. Found: m/z 507.2410.

(Z)-2-(dimethyl(phenyl)silyl)-N,N-diethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-amine

Isolated in 36% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.44 (s, 6H), 0.87 (t, $J = 7.1$ Hz, 6H), 1.09 (s, 12H), 2.37 (q, $J = 7.1$ Hz, 4H), 3.11 (d, $J = 1.5$ Hz, 2H), 6.31 (t, $J = 1.3$ Hz, 1H), 7.26 – 7.29 (m, 3H), 7.52 – 7.56 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 11.03, 24.90, 45.65, 66.09, 83.27, 127.35, 128.25, 134.28, 140.93, 163.24.

11B NMR (160 MHz, Chloroform-d) δ 28.35.

HRMS Calcd for $C_{21}H_{37}NO_2BSi$: [M+H]$^+$, 374.2681. Found: m/z 374.2689.
(Z)-1-(2-(dimethyl(phenyl)silyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)piperidine

\[
\begin{align*}
\text{N} & \quad \text{SiMe}_2\text{Ph} \\
\text{B(pin)} & \\
\end{align*}
\]

Isolated in 47% yield as a colorless oil.

\(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 0.45 (s, 6H), 1.10 (s, 12H), 1.32 – 1.40 (m, 2H), 1.41 – 1.47 (m, 4H), 2.16 (s, 4H), 2.94 (d, \(J = 1.4\) Hz, 2H), 6.17 (t, \(J = 1.3\) Hz, 1H), 7.26 – 7.29 (m, 3H), 7.55 – 7.59 (m, 2H).

\(^{13}\)C NMR (126 MHz, Chloroform-\(d\)) \(\delta\) 24.74, 24.90, 26.17, 54.31, 71.75, 83.29, 127.23, 128.21, 134.37, 140.94, 162.86.

\(^{11}\)B NMR (160 MHz, Chloroform-\(d\)) \(\delta\) 29.15.

HRMS Calcd for \(C_{22}H_{37}NBSi\): [M+H]^+ \(386.2681\). Found: m/z 386.2690.

A mixture of (Z)-dimethyl(phenyl)(3-(phenylthio)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)silane, (E)-dimethyl(phenyl)(3-(phenylthio)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)silane and (E)-dimethyl(phenyl)(3-(phenylthio)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)silane

\[
\begin{align*}
\text{PhS} & \quad \text{SiMe}_2\text{Ph} \\
\text{B(pin)} & \\
\end{align*}
\]

Isolated in 48% yield as a colorless oil.

\(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 0.33 (s, 6H, minor-a), 0.45 (s, 6H, minor-b), 0.54 (s, 6H, major), 1.06 (s, 12H, major), 1.15 (s, 12H, minor-a), 1.23 (s, 12H, minor-b), 3.68 (s, 2H, major), 3.71 (s, 2H, minor-a), 4.06 (s, 2H, minor-b), 6.00 (s, 1H, minor-b), 6.17 (s, 1H, major), 6.28 (s, 1H, minor-a), 7.36 – 7.11 (m, 24H, major + minor-a + minor-b), 7.40 (dd, \(J = 7.5, 2.0\) Hz, 2H, minor), 7.53 (d, \(J = 8.2\) Hz, 2H, minor), 7.62 – 7.56 (m, 2H).

\(^{13}\)C NMR (126 MHz, Chloroform-\(d\)) \(\delta\) -2.27, -1.12, -1.05, 24.60, 24.74, 24.84, 37.79, 44.78, 46.57, 83.20, 83.26, 83.75, 125.81, 126.14, 126.33, 127.46, 127.68, 127.91, 128.45, 128.57, 128.62, 128.79, 128.98, 129.94, 130.03, 130.24, 130.81, 131.01, 131.65, 133.77, 134.20, 136.33, 136.77, 137.70, 139.59, 146.99, 158.23, 162.91.
1B NMR (160 MHz, Chloroform-d) δ 28.29.
HRMS Calcd for C$_{23}$H$_{31}$O$_2$BSSiNa: [M+Na]$^+$, 433.1805. Found: m/z 433.1799.

(Z)-4-(2-(dimethyl(phenyl)silyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)morpholine

Isolated in 72% yield as a colorless oil.
1H NMR (500 MHz, Chloroform-d) δ 0.46 (s, 6H), 1.13 (s, 12H), 2.21 (s, 4H), 2.99 (d, J = 1.3 Hz, 2H), 3.57 (t, J = 4.4 Hz, 4H), 6.20 (t, J = 1.4 Hz, 1H), 7.27 – 7.30 (m, 3H), 7.56 – 7.60 (m, 2H).
13C NMR (126 MHz, Chloroform-d) δ 0.57, 24.92, 53.31, 67.18, 71.26, 83.45, 127.30, 128.39, 134.35, 140.46, 161.58.
11B NMR (160 MHz, Chloroform-d) δ 29.29.
HRMS Calcd for C$_{21}$H$_{35}$O$_3$NBSi: [M+H]$^+$, 388.2474. Found: m/z 388.2483.

(Z)-2-(dimethyl(phenyl)silyl)-N,N-diisopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-amine

Isolated in 71% yield as a colorless oil.
1H NMR (500 MHz, Chloroform-d) δ 0.44 (s, 6H), 0.90 (d, J = 6.6 Hz, 12H), 1.08 (s, 12H), 2.95 (hept, J = 6.6 Hz, 2H), 3.18 (d, J = 1.9 Hz, 2H), 6.73 (t, J = 1.9 Hz, 1H), 7.29 (dp, J = 5.1, 1.9 Hz, 4H), 7.53 – 7.50 (m, 3H).
13C NMR (126 MHz, Chloroform-d) δ -0.81, 20.75, 24.91, 48.09, 54.73, 83.08, 127.52, 128.41, 134.06, 140.74, 163.72.
11B NMR (160 MHz, Chloroform-d) δ 29.91.
HRMS Calcd for C$_{23}$H$_{33}$O$_2$NBSi: [M+H]$^+$, 402.2994. Found: m/z 402.3004.

(Z)-3-(dimethyl(phenyl)silyl)-N,N-diethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-amine

Isolated in 61% yield as a pale yellow oil.
1H NMR (500 MHz, Chloroform-d) δ 0.46 (s, 6H), 0.94 (t, J = 7.2 Hz, 6H), 1.09 (s, 12H), 2.34 – 2.47 (m, 8H), 6.23 (s, 1H), 7.28 – 7.31 (m, 3H), 7.51 – 7.55 (m, 2H).
13C NMR (126 MHz, Chloroform-d) δ 12.05, 24.84, 29.84, 39.12, 46.90, 53.47, 83.32, 127.63, 128.64, 134.21, 140.16, 164.61.

S8
11B NMR (160 MHz, Chloroform-d) δ 28.49.

HRMS Calcd for C$_{22}$H$_{39}$NBSi: [M+H]$^+$, 388.2838. Found: m/z 388.2854.

A mixture of diethyl (Z)-(4-(dimethyl(phenyl)silyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-en-1-yl)phosphonate and diethyl (E)-(5-(dimethyl(phenyl)silyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-en-1-yl)phosphonate

Isolated in 84% yield as a pale yellow oil.

1H NMR (500 MHz, Chloroform-d) δ 0.38 (s, 6H, minor), 0.44 (s, 6H, major), 1.07 (s, 12H, major), 1.10 (s, 12H, minor), 1.29 (t, J = 7.1 Hz, 6H, major + minor), 1.58 – 1.67 (m, 4H, major + minor), 2.28 (t, J = 6.6 Hz, 2H, major + minor), 3.99 – 4.09 (m, 4H, major + minor), 6.17 (t, J = 1.2 Hz, 1H, major), 6.44 (s, 1H, minor), 7.27 – 7.31 (m, 3H, major + minor), 7.48 – 7.53 (m, 2H, major + minor).

13C NMR (126 MHz, Chloroform-d) δ 16.60 (d, J = 6.1 Hz), 22.15 (d, J = 4.9 Hz), 24.81, 25.90, 43.14 (d, J = 17.1 Hz), 61.47 (d, J = 6.5 Hz), 83.31, 127.59, 128.61, 134.08, 140.08, 146.47, 164.69.

11B NMR (160 MHz, Chloroform-d) δ 29.15.

31P NMR (202 MHz, Chloroform-d) δ 32.58, 33.05.

HRMS Calcd for C$_{46}$H$_{80}$B$_2$O$_{10}$Si$_2$P$_2$Na. [2M+Na]$^+$, 955.4849. Found: m/z 955.4852.
NOE experiments for determining stereochemistry

From PhMe$_2$Si–B(dan)
From PhMe₂Si–B(pin)
Direct cross-coupling of 3a

A flame-dried Schlenk tube equipped with a magnetic stirring bar were charged with Pd(PPh$_3$)$_4$ (15.0 mg, 0.013 mmol), 3a (108.2 mg, 0.26 mmol), 4-bromoanisole (48.6 mg, 0.26 mmol), and 1,4-dioxane (1.73 mL). The mixture was stirred at 100 °C for 5 min before addition of t-BuOK (1 M in THF, 0.40 mL, 0.40 mmol). The resulting mixture was stirred at 100 °C for 1 h. After quenching the mixture with brine (20 mL), the resulting mixture was extracted with EtOAc (15 mL × 3). The organic solution was dried over MgSO$_4$ and evaporated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc as an eluent) to give a cross-coupling product.

(Z)-(1-(4-methoxyphenyl)oct-1-en-2-yl)dimethyl(phenyl)silane (4)

Isolated in 52% yield as a dark brown oil.

1H NMR (500 MHz, Chloroform-d) δ 0.33 (s, 6H), 1.03 (t, J = 7.0 Hz, 3H), 1.44 (m, 6H), 1.54 – 1.65 (m, 2H), 2.36 – 2.45 (m, 2H), 3.91 (s, 3H), 6.84 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.37 (s, 1H), 7.42 – 7.52 (m, 3H), 7.58 – 7.69 (m, 2H).

13C NMR (126 MHz, Chloroform-d) δ 14.19, 22.75, 28.08, 29.29, 30.67, 31.82, 39.35, 55.28, 113.09, 127.70, 128.63, 129.92, 132.86, 133.95, 140.33, 141.28, 142.99, 158.56.

HRMS Calcd for C$_{23}$H$_{32}$OSi: [M]$^+$, 352.2222. Found: m/z 352.2226.

Copper-catalyzed reaction of 1 with 1-octyne

A flame dried Schlenk tube were charged with SIMesCuCl (2.0 mg, 5.0 µmol), t-BuONa (2.0 mg, 0.02 mmol) and THF (0.56 mL). The solution was allowed to stir at 22 °C for 2 h. Then 1 (158.7 mg, 0.525 mmol) was added to the solution, and the mixture was allowed to stir at 22 °C for 30 min. 1-Octyne (55.1 mg, 0.50 mmol) and MeOH (30 µL, 0.75 mmol) were added. The resulting mixture was allowed to stir at 22 °C for 12 h before the reaction was quenched by passing the mixture through a short plug of celite and silica gel and eluted with ether (3 × 2 mL). The filtrate was concentrated in vacuo to provide a crude product, which was purified by silica gel chromatography (Hexane/EtOAc as an eluent) to afford the product.

(E)-dimethyl(oct-1-en-1-yl)(phenyl)silane (5)

Isolated in 55% yield as a colorless oil.

1H NMR (500 MHz, Chloroform-d) δ 0.32 (s, 6H), 0.89 (d, J = 7.0 Hz, 3H), 1.25 – 1.33 (m, 6H), 1.37 – 1.44 (m, 2H), 2.14 (dtd, J = 7.7, 6.3, 1.6 Hz, 2H), 5.75 (dt, J = 18.5, 1.6 Hz, 1H),
6.12 (dt, \(J = 18.5, 6.3 \) Hz, 1H), 7.33 – 7.36 (m, 3H), 7.48 – 7.56 (m, 2H).

\(^{13}\)C NMR (126 MHz, Chloroform-\(d \)) \(\delta \) -2.44, 14.10, 22.63, 28.60, 28.89, 31.73, 36.84, 127.11, 127.70, 128.79, 133.80, 139.41, 149.58.

Copper-catalyzed reaction of 1 with 1-phenyl-1-propyne

1-Phenyl-1-propyne (23.2 mg, 0.2 mmol) and 1 (72.5 mg, 0.24 mmol) were added with the aid of THF (0.2 mL) to a mixture of CuI (3.8 mg, 0.02 mmol) and \(t \)-BuONa (7.7 mg, 0.08 mmol) in THF (0.8 mL), and the resulting mixture was stirred at 40 °C for 20 h. This was passed through a pad of silica gel with EtOAc and the solvent was removed under vacuum. The residue was purified by preparative recycling gel permeation chromatography (chloroform as an eluent) to afford the product.

A mixture of (\(E \))-dimethyl(phenyl)(1-phenylprop-1-en-2-yl)silane (6) and (\(E \))-dimethyl(phenyl)(1-phenylprop-1-en-1-yl)silane (6’)

Isolated in 10% yield as a colorless oil.

\(^1\)H NMR (500 MHz, Chloroform-\(d \)) \(\delta \) 0.31 (s, 6H, minor), 0.44 (s, 6H, major), 1.58 (d, \(J = 6.5 \) Hz, 3H, minor), 1.95 (d, \(J = 1.8 \) Hz, 3H, major), 6.12 (q, \(J = 6.6 \) Hz, 1H, minor), 6.81 (q, \(J = 1.9 \) Hz, 1H, major), 7.12 – 7.40 (m, 16H, major+minor), 7.47 – 7.54 (m, 2H, minor), 7.54 – 7.60 (m, 2H, major).

\(^{13}\)C NMR (126 MHz, Chloroform-\(d \)) \(\delta \) -3.27, -2.81, 1.01, 16.85, 29.86, 76.91, 77.16, 77.41, 125.47, 126.75, 127.77, 127.85, 127.93, 128.06, 128.18, 128.24, 129.01, 129.14, 129.19, 129.39, 133.14, 134.00, 134.22, 134.31, 138.28, 138.38, 138.99, 139.96.
X-ray crystallographic analyses
Crystals suitable for the X-ray structural determination were mounted on a Bruker SMART APEXII CCD diffractometer and irradiated with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) for data collection. The data were processed using the APEX3 program suite and summarized in a table shown in next page. All structures were solved by an intrinsic phasing method using the SHELXT program (ver. 2014/4–2014/5). Refinement on F^2 was carried out using full-matrix least-squares with the SHELXL and expanded using Fourier techniques. All nonhydrogen atoms, except those of disordered solvents, were refined using anisotropic thermal parameters. Hydrogen atoms were assigned to idealized geometric positions and included in structure factor calculations. The SHELX was interfaced with SHELXL GUI for most of the refinement steps. The pictures of the molecules were prepared using Pov-Ray 3.6.
Crystal data and structure refinement for 1

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>1</td>
</tr>
<tr>
<td>CCDC No.</td>
<td>2120998</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C18 H19 B N2 Si</td>
</tr>
<tr>
<td>Formula weight</td>
<td>302.25</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_1)2(_1)2(_1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>7.0647(16) Å (\alpha = 90^\circ)</td>
</tr>
<tr>
<td>b</td>
<td>11.425(3) Å (\beta = 90^\circ)</td>
</tr>
<tr>
<td>c</td>
<td>20.803(5) Å (\gamma = 90^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>1679.1(7) Å(^3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.196 Mg/m(^3)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.137 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>640</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.200 x 0.050 x 0.010 mm(^3)</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.958 to 26.394°</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>-8 (\leq h \leq 8)</td>
</tr>
<tr>
<td>k</td>
<td>-13 (\leq k \leq 14)</td>
</tr>
<tr>
<td>l</td>
<td>-26 (\leq l \leq 18)</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8946</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3420 [R(int) = 0.0267]</td>
</tr>
<tr>
<td>Completeness to theta = 25.242°</td>
<td>99.90%</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F(^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3420 / 0 / 201</td>
</tr>
<tr>
<td>Goodness-of-fit on F(^2)</td>
<td>1.039</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td></td>
</tr>
<tr>
<td>R(_1)</td>
<td>0.0332, wR(_2) = 0.0731</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td></td>
</tr>
<tr>
<td>R(_1)</td>
<td>0.0397, wR(_2) = 0.0760</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.05(5)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.214 and -0.181 e.Å(^{-3})</td>
</tr>
</tbody>
</table>
References
NMR spectra

^{1}H

PhMe$_2$Si—B(dan)

^{13}C

PhMe$_2$Si—B(dan)
11B
PhMe₂Si–B(dan)
$^{11}\text{B}} \text{Et}_2\text{NC}_\text{SiMe}_2\text{Ph} \text{B(dan)} + \text{Et}_2\text{NC}_\text{SiMe}_2\text{Ph} \text{B(dan)}$
^{11}B

![Chemical Structure](attachment:image.png)