Supporting Information

Monochromatic light-enhanced photocatalytic CO₂ reduction based on exciton properties of two-dimensional lead halide perovskites

Shengqi Xu,^a Lu Yang,^a Yixuan Wei,^a Yiming Jia,^a Meiqi Hu,^a Lianxia Bai,^b Junzheng Zhang,^b Xinxin Li,^c Shuo Wei^{*a} and Jun Lu^b

^{a.} College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

^{b.} State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

^{c.}Analytic and Testing Center, Beijing Normal University, Beijing 100875, P. R. China.

*corresponding author: vshuo@bnu.edu.cn.

Figure S1. XRD patterns of (a-c) L_2PbX_4 (L = ba, ha, oa; X = Cl, Br, I); (b) The local enlargement XRD pattern for (ha)₂CsPb₂Br₇ with the angles ranging from $10^{\circ} \sim 50^{\circ}$.

2θ(deg.)	(hkl)	d _{hkl} (Å)
3.73	(002)	23.720
11.11	(006)	7.9608
14.84	(008)	5.8905
15.33	(110)	5.7781
18.58	(0010)	4.7759
21.59	(111)	4.0715
22.66	(0012)	3.9236
26.12	(0014)	3.4113
29.93	(0016)	2.9450
30.97	(220)	2.8678
33.78	(0018)	2.6532
44.87	(222)	2.0255

Table S1. The main XRD peak data of (ha)₂CsPb₂Br₇

Domovalvitor		С	Η	Ν	Pb
Perovskites		(wt%)	(wt%)	(wt%)	(µg/mL)
(ba) ₂ PbCl ₄	Calculated value	19.40	4.48	5.66	39.82
	Elemental analysis	19.03	4.16	5.21	38.54
(ha) ₂ PbCl ₄	Calculated value	26.14	5.48	5.08	69.14
	Elemental analysis	25.7	5.287	4.97	69.44
(oa) ₂ PbCl ₄	Calculated value	31.633	6.305	4.611	40.929
	Elemental analysis	31.37	6.344	4.57	42.04
(ba) ₂ PbBr ₄	Calculated value	14.28	3.294	4.16	38.171
	Elemental analysis	14.21	3.297	4.15	38.13
(ha) ₂ PbBr ₄	Calculated value	19.77	4.15	3.84	46.60
	Elemental analysis	19.61	4.36	3.83	44.71
(oa) ₂ PbBr ₄	Calculated value	24.471	4.877	3.567	22.163
	Elemental analysis	25.00	5.211	3.66	21.6
(ba) ₂ PbI ₄	Calculated value	11.159	2.575	3.253	39.46
	Elemental analysis	10.73	2.646	3.11	38.92
(ha) ₂ PbI ₄	Calculated value	15.714	3.297	3.054	57.83
	Elemental analysis	15.98	3.423	3.13	56.57
(oa) ₂ PbI ₄	Calculated value	19.744	3.935	2.878	33.21
	Elemental analysis	18.89	4.045	2.78	31.53
(ha) CaDha Dra	Calculated value	11.01	2.31	2.14	51.918
(IIIa)2 CSP 02BI7	Elemental analysis	11.12	2.425	2.15	50.48

Table S2. Elemental analysis and ICP for $L_2Cs_{n-1}Pb_nX_{3n+1}$ (L = ba, ha, oa; X = Cl, Br, I; *n* = 1, 2)

Figure S2. SEM and EDS images of (a) (ba)₂PbCl₄, (b) (ha)₂PbCl₄, (c) (oa)₂PbCl₄, (d) (ba)₂PbBr₄, (e) (ha)₂PbBr₄, (h) (oa)₂PbBr₄, (g) (ba)₂PbI₄, (h) (ha)₂PbI₄ and (i) (oa)₂PbI₄.
Corresponding element mapping in SEM image Pb (red), Cl (green), Br (yellow) and I (blue).

Figure S3. TEM images(a-c), HRTEM images(d-f) (the right bottom panel is FFT pattern) of (a) (ha)2PbCl4, (b) (ha)2PbBr4 and (c) (ha)2PbI4.

Figure S4. XPS spectra corresponding to (a,d,g) survey, (b,e,h) Pb 4f, (c)Cl 2P, (f)Br 3d and (i)I 3d of L₂PbCl₄(a-c), L₂PbBr₄(d-f) and L₂PbI₄(g-i)(L = ba, ha, oa). The binding energy is calibrated with the C 1s peak (284.5 eV) of free carbon.

Figure S5. XPS spectra of (ha)₂CsPb₂Br₇ (a)survey, (b)Pb 4f, (c)Br 3d and (d)Cs 3d. The binding energy is calibrated with the C 1s peak (284.5 eV) of free carbon.

Table S3. Quantitative XPS analysis of $L_2Cs_{n-1}Pb_nX_{3n+1}$ (L = ba, ha, oa; X = Cl, Br, I; *n* = 1, 2).

Perovskites	Atomic Ratio (%)		
	Pb	Χ	Cs
(ba) ₂ PbCl ₄	10.18	38.55	
(ha) ₂ PbCl ₄	8.18	31.6	
(oa) ₂ PbCl ₄	5.22	20.96	
(ba) ₂ PbBr ₄	8.33	31.45	
(ha) ₂ PbBr ₄	4.11	17.15	/
(oa) ₂ PbBr ₄	3.51	16.21	
(ba) ₂ PbI ₄	4.47	18.71	
(ha) ₂ PbI ₄	2.48	12.18	
(oa) ₂ PbI ₄	1.56	6.86	
(ha) ₂ CsPb ₂ Br ₇	6.34	24.93	3.47

Figure S6. UV-vis absorption(solid line) and PL emission spectra(dotted line) of (a)L₂PbCl₄, (b) L₂PbBr₄, (c) L₂PbI₄(L = ba, ha, oa)

Figure S7. Tauc plots of (a)(ha)₂PbCl₄ (b) (ha)₂PbBr₄ (c) (ha)₂CsPb₂Br₇ (d) (ha)₂PbI₄

Figure S8. XRD patterns of (a)(ha)₂PbCl₄ (b) (ha)₂PbBr₄ (c) (ha)₂PbI₄ (d) (ha)₂CsPb₂Br₇ and corresponding to UV–vis absorption spectra(e-h) after several days under atmosphere

environment.

Figure S9. Photocatalytic evolution of CO for photocatalytic catalyst in various solvents (300 W Xe lamp, with the light intensity of 400 mW and the light source of full wavelength).
(a)(ha)₂PbCl₄ (b) (ha)₂PbBr₄ (c) (ha)₂PbI₄ (d) (ha)₂CsPb₂Br₇ and corresponding to CO and CH₄ yield after 4 h of photochemical reaction(e-h).

Figure S10. XRD patterns of (a)(ha)₂PbCl₄ (b) (ha)₂PbBr₄ (c) (ha)₂CsPb₂Br₇ in various solvents and corresponding to UV–vis absorption spectra(d-f) after 4 h of photochemical reaction (300 W

Xe lamp, with the light intensity of 400 mW and the light source of full wavelength).

		Light	Droduate	
Photocatalyst	conditions	Ligiit sourco/Intensity	/umol.g ⁻¹ .h ⁻¹	Ref.
		200W V - 1- mm	/μποι·g ·π	T1.:-
(ha) ₂ CsPb ₂ Br ₇	butyl acetate	300 w Xe lamp	CU, 158.69	I nis
	-	400 mw	CH4, 0.9	WOLK
	ethyl acetate	150W Xe Lamp	CU, 17.2	S 1
$P1-CSP0Br_3/B1_2WO_6$	/isopropanol	AWI 1.50 150 mW/sm^{-2}	СП4, 54.4 II 7 4	
C_{z} Dl D $_{z}$ /C $_{z}$ Dl D $_{z}$		150 mw/cm ⁻	$H_2, /.4$	
CSP0Br ₃ /Cs ₄ P0Br ₆	- acetonitrile/ water/	300W Xe Lamp		S2
$CO_{1\%}(a)$	methanol	100 mW/cm^{-2}	CO, 122.33	
CSP0Br ₃ /Cs ₄ P0Br ₆			CO 410	
CsPbBr ₃	ethyl acetate/water and		CO, <10	
	acetonitrile/water	300W Xe lamp	CH ₄ , <10	S3
C_{s} PbBr ₂ / α C ₂ N	acetonitrile/water	>420 nm	CO, 148.9	
CSI 0D13/g-C3114	ethyl acetate/water		CO, <70	
$M_{\rm m}/C_{\rm a} {\rm Dh}({\rm Dm}/{\rm Cl})$		300W Xe Lamp	CO, 213	S4
MIN/CSPD(BI/CI)3	ethyl acetate	AM 1.5G	CH ₄ , 9.1	
CaDhDr. Chuairea		300W Xe lamp	CO 277	S5
CSP0Br3-Glycine	gas (CO_2+H_2O)	100 mW/cm^{-2}	0,27.7	
			CO, 15	
CSP0Br3	-4114-4-	300W Xe Lamp	CH4, 6.7	S6
	- ethyl acetate	AM 1.5G	CO, 85.2	
$CsPb(Br_{0.5}/Cl_{0.5})_3$			CH ₄ , 12	
CsPbBr ₃ /g-C ₃ N ₄	deionized water	300W Xe Lamp	CO, 6.1	S7
	toluene	300W Xe lamp	CO, 28.5	\$8
CsPbBr ₃ /g-C ₃ N ₄		>420 nm		50
· · · · · · · · · · · · · · · · · · ·		300W Xe lamp		<u> </u>
CsPbBr ₃	gas (CO_2+H_2O)	100 mW/cm^{-2}	CO, 21.6	67
		20011111	CO, 7.78	
CsPbBr ₃		300W Xe lamp	CH ₄ , 3.93	S10
	acetonitrile/water	>420 nm	CO, 17.83	210
$C_{60}/CsPbBr_3$		150 mW/cm^{-2}	CH ₄ , 6.83	
$Cs_4Pb_3Br_{10} (n = 3);$		200111 1/1	CO, 25.96; 38.27	
$Cs_5Pb_4Br_{13}$ (<i>n</i> = 4)		300W Xe lamp	CH ₄ , 2.67; 2.88	S11
Cs ₄ Pb ₃ Br ₁₀ /RGO;	- gas (CO ₂ +H ₂ O)	AM 1.5G 100 mW/sm^{-2}	CO, 54.82; 81.39	
Cs5Pb4Br13/RGO		100 mW/cm^2	CH ₄ , 4.20; 3.86	
		300W Xe lamp	00.07.7	S12
$Cs_3Sb_2(Br_{0.7}I_{0.3})_9$	gas (CO_2+H_2O)	>420 nm	CO, 27.7	~12
		200111 J. 1	CO, 8.58	
$Cs_3Bi_2Br_9$		300W Xe lamp	CH ₄ , 5.36	S13
	Isopropanol	200-1100 nm	CO, 7.34	210
Cs ₂ AgBiBr ₆		$/0 \text{ mW/cm}^2$	CH ₄ , 0.75	
	H ₂ O	200 II 1	CO, 1025	~
ZnFe ₂ O ₄ /Ag/TiO ₂		200 Hg lamp	CH4, 132	S14
2 . 02		150mW cm ²	CH ₃ OH, 31	
		200 11/ 1/	CO, 11.205	S15
Cuini/C	TEUA-H ₂ U	300 w Xe lamp	CH4, 0.9	

 Table S4. Summary of reported photocatalytic CO2 reduction performance.(Most of them are perovskite-based photocatalysts)

Figure S11. (a) UV-vis absorption spectrum of (ha)₂PbBr₄ and CO yield under monochromic sources after 4 h of photocatalytic reaction (the illustration show the corresponding monochromic light sources); (b) Photocatalytic evolution of CO under monochromic light sources (300 W Xe lamp, with the light intensity of 50 mW).

Figure S12. CO and CH₄ yield of (ha)₂CsPb₂Br₇ as photocatalyst and BAC as solvent for three consecutive runs of 4 h each time (300 W Xe lamp, with the light intensity of 400 mW and the light source of full wavelength).

Figure S13. (a) XRD patterns and (b) UV-vis spectra of (ha)₂CsPb₂Br₇ after photocatalytic reaction (300 W Xe lamp, with the light intensity of 400 mW and the light source of full wavelength).

Figure S14. Photocatalytic evolution of products in different conditions with (ha)₂CsPb₂Br₇ as photocatalyst and BAC as solvent (300 W Xe lamp, with the light intensity of 400 mW and the light source of full wavelength). (a)CO and (b)CH₄.

REFERENCES

- S1 Y. Jiang, H. Y. Chen, J. Y. Li, J. F. Liao, H. H. Zhang, X. D. Wang and D. B. Kuang, Adv. Funct. Mater., 2020, 30, 2004293.
- S2 G. Dong, W. Zhang, Y. Mu, K. Su, M. Zhang and T. Lu, Chem. Commun., 2020, 56, 4664.
- S3 M. Ou, W. G. Tu, S. M. Yin, W. N. Xing, S. Y. Wu, H. J. Wang, S. P. Wan, Q. Zhong and R. Xu, Angew. Chem. Int. Ed., 2018, 57, 13570.
- S4 Y. Liu, S. Guo, S. You, C. Sun, X. Wang, L. Zhao and Z. Su, *Nanotechnology*, 2020, 31, 215605.
- S5 Y. Xu, W. Zhang, K. Su, Y. X. Feng, Y. F. Mu, M. Zhang and T. B. Lu, *Chem. Eur. J.*, 2021, 27, 2305.
- S6 S. Guo, J. Zhou, X. Zhao, C. Sun, S. You, X. Wang and Z. Su, J. Catal., 2019, 369, 201.
- S7 Y. Wang, Z. Liu, X. Tang, P. Huo, Z. Zhu, B. Yang and Z. Liu, New J. Chem., 2021, 45, 1082.
- S8 R. Cheng, H. Jin, M. B. J. Roeffaers, J. Hofkens and E. Debroye, ACS Omega, 2020, 5, 24495.
- S9 L. Wu, M. Zhang, Y. Feng, W. Zhang, M. Zhang and T. Lu, Solar RRL, 2021, 5, 2100263.
- S10 Z. Zhang, M. Shu, Y. Jiang and J. Xu, Chem. Eng. J., 2021, 414, 128889.
- S11 C. C. Lin, J. Y. Li, N. Z. She, S. K. Huang, C. Y. Huang, I. T. Wang, F. L. Tsai, C. Y. Wei, T. Y. Lee, D. Y. Wang, C. Y. Wen, S. S. Li, A. Yabushita, C. W. Luo, C. C. Chen and C. W. Chen, *Small*, 2022, 2107881.
- S12 D. F. Wu, B. J. Huo, Y. Y. Huang, X. S. Zhao, J. Y. Yang, K. Hu, X. C. Mao, P. He, Q. Huang and X. S. Tang, *Small*, 2022, 18, 2106001.
- S13 Q. M. Sun, J. J. Xu, F. F. Tao, W. Ye, C. Zhou, J. H. He and J. M. Lu, *Angew. Chem. Int. Ed.*, 2022, e202200872.
- S14 Muhammad Tahir, J. CO2 Util., 2020, 37, 134.
- S15 H. Jiang, S. Q. Gong, S. Xu, P. H. Shi, J. C. Fan, V. Cecen, Q. J. Xu, and Y. L. Min, *Dalton Trans.*, 2020, 49, 5074.