SUPPORTING INFORMATION

Water soluble Organometallic Small Molecules as Promising Antibacterial Agents: Synthesis, Physical-chemistry properties and Biological Evaluation to tackling bacterial infections.

Ines Bennour,¹ M. Núria Ramos,² Miquel Nuez,¹ Jewel Ann Maria Xavier,¹ Ana B. Buades,¹ Reijo Sillanpää,³ Francesc Teixidor,¹ Duane Choquesillo-Lazarte,⁴ Isabel Romero,⁵ Margarita Martinez-Medina,⁴ Clara Viñas^{*,1}.

Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain Fax: (internat.) + 34-935805729

MicrobiologyMicrobiology of the Intestinal Disease group, Biology Department of Biology, Universitat de Girona, 17003 Girona, Spain.

Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M.

Aurèlia Campmany, 69, E-17003 Girona, Spain

Dept. of Chemistry, University of Jyväskylä. FIN-40014, Jyvaskyla, Finland.

Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain

Table of content

	Page
Scheme S1. a) Synthesis in solution of anionic ortho-metallabis(dicarbollides)	
by complexation reaction of the ortho nido-carboranyl ligands and the corresponding	
MCl ₂ salt (M= Co and Fe). b) Synthesis in solution of anionic <i>meta</i> -metallabis	
(dicarbollides) by complexation reaction of the meta nido-carboranyl ligands	
and the corresponding MCl_2 salt (M= Co and Fe).	4
Scheme S2. Synthesis in solid state of $[HNMe_3]^+$ salt of the anionic small	
cobaltabis(dicarbollide) molecules: a) [1] ⁻ and b) [5] ⁻ by complexation reaction	
of the $[HNMe_3]^+$ salt of the corresponding <i>ortho</i> and <i>meta nido</i> -carboranyl ligands	
with CoCl ₂ .xH ₂ O.	<mark>5</mark>
Scheme S3. a) Preparation of the corresponding sodium salts, Na[1], and Na[2],	
by cation exchange resin. b) Preparation of the water-soluble sodium salts of	
[4] ⁻ and [5] ⁻ by means of cationic exchange resin.	<mark>6</mark>
Scheme S4. a) Synthesis of the Cs[3] from [1] ⁻ employing either ICl	
(yield = 84%,), or I_2 (yield= 98%) in EtOH at reflux. b) Synthesis of the water	
soluble Na[3] by means of cationic exchange resin.	<mark>7</mark>
Characterization of Na[2,2'-Co(1,7-C ₂ B ₉ H ₁₁) ₂]·2.5H ₂ O, Na[5].	
Figure 1 – Figure .S10	8
Characterization of Na[2,2'-Fe(1,7-C ₂ B ₉ H ₁₁) ₂]·2.5H ₂ O, Na[6].	
Figure S11 – Figure S18.	14
Characterization of $Cs[3,3]{-}Fe(8-I-1,2-C_2B_9H_{11})_2$, $Cs[4]$.	
Figure S19 – Figure S23.	18
Characterization of Na[3,3'-Fe(8-I-1,2- $C_2B_9H_{11})_2$]·2.5H ₂ O, Na[4].	
Figure S24 – Figure S30.	21
Figure S31. a) ¹¹ B-NMR spectra of Na[6] in D_2O with the chemical	
shift numbers of the Boron vertices B(6), B(9,12), B(5,11), B(10), B(4,7) and	
B(8) from down to high field. b) ¹ H-NMR spectra of Na[6] in D_2O .	25
Figure S32. ¹¹ B{ ¹ H}-NMR spectra of Na[6] in D ₂ O in the concentration	
range of 5-100 mM.	26
Figure S33 $[H_{1}]B_{1}$ -NMR spectra of Na[5] in D ₂ O at different concentrations	27

Figure S34. ¹¹ B $\{^{1}H\}$ NMR spectra of Na[5] in D ₂ O at different concentrations.	27
Table S1. Crystal data and structure refinement H[6], and Cs[4].	28
Cyclic voltammetry studies.	
Figure S35. – Figure S41.	29
Solubility studies.	
Figure S42 – Figure S45.	33
Lipophilicity Studies.	
Figure S46 – S49.	37
Figure S50. Dynamic lattice scattering of $Na[5]$ in H_2O	
(a) Size distribution by Intensity and (b) Raw correlation data presentation	41
References	42

Scheme S1. a) Synthesis in solution of anionic *ortho*-metallabis(dicarbollides) by complexation reaction of the *ortho nido*-carboranyl ligands and the corresponding MCl₂ salt (M= Co and Fe). b) Synthesis in solution of anionic *meta*-metallabis(dicarbollides) by complexation reaction of the *meta nido*-carboranyl ligands and the corresponding MCl₂ salt (M= Co and Fe).¹ Anionic ligands are obtained by "partial deboronation" reaction of the corresponding icosahedral neutral *closo*-carboranes with a nucleophile (Nu⁻ = EtO⁻, pyperidine, F⁻, among others).² Circles in grey represent the C_c-H vertices, the orange ones correspond to metal (M= Co³⁺, Fe³⁺) while the circles in pink correspond to B-H vertices.

Scheme S2. Synthesis in solid state of $[HNMe_3]^+$ salt of the anionic small cobaltabis(dicarbollide) molecules: a) $[1]^-$ and b) $[5]^-$ by complexation reaction of the $[HNMe_3]^+$ salt of the corresponding *ortho* and *meta nido*-carboranyl ligands with CoCl₂.xH₂O.³

Scheme S3. a) Preparation of the corresponding sodium salts, Na[1],⁴ and Na[2],⁵ by cation exchange resin. b) Preparation of the water soluble sodium salts of [4]⁻ and [5]⁻ by means of cationic exchange resin.⁶

Scheme S4. a) Synthesis of the Cs[3] from $[1]^-$ employing either ICl (yield = 84%,),⁷ or I₂ (yield= 98%)⁸ in EtOH at reflux. b) Synthesis of the water soluble Na[8,8'-I₂-o-COSAN] by means of cationic exchange resin.

a)

Na[**3**]

Characterization of Na[2,2'-Co(1,7-C₂B₉H₁₁)₂]·2.5H₂O, abbreviated as Na[5].

Figure S1. IR spectrum of Na[2,2'-Co(1,7-C₂B₉H₁₁)₂]·2.5H₂O, Na[5].

Figure S2. MALDI-TOF-MS experimental spectrum of [5]⁻. Inset the theoretical MS.

Figure S3. ${}^{1}H{}^{11}B$ -NMR of Na[5] in D₂O

Figure S4. ¹H NMR of Na[5] in D₂O

4.9 2.5 4.7 4.5 4.3 4.1 3.9 3.7 3.5 3.3 3.1 f1 (ppm) 2.9 2.7 2.3 2.1 1.9 1.7 1.5

Figure S5. ${}^{1}H{}^{11}B{}$ NMR of Na[5] in CD₃COCD₃.

4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 f1(pm)

Figure S7. ${}^{11}B{}^{1}H$ NMR of Na[5] in D₂O.

Figure S9. ¹¹B NMR of Na[5] in CD₃COCD₃.

Characterization of Na[2,2'-Fe(1,7-C₂B₉H₁₁)₂]·2.5H₂O, abbreviated as Na[6].

Figure S11. IR spectrum of Na[2,2]-Fe $(1,7-C_2B_9H_{11})_2$ -2.5H₂O, Na[6].

Figure S12. MALDI-TOF-MS experimental spectrum of [6]⁻. Inset the theoretical MS.

Figure S13. ¹H NMR of Na[6] in CD₃COCD₃.

Figure S14. ${}^{11}B{}^{1}H{}$ NMR of Na[6] in CD₃COCD₃.

Figure S15. ¹H NMR of Na[6] in H_2O .

Figure S16. ${}^{1}H{}^{11}B$ NMR of Na[6] in H₂O.

Figure S17. ¹¹B NMR of Na[6] in H_2O .

Figure S18. ¹¹B $\{$ ¹H $\}$ NMR of Na[6] in H₂O.

Characterization of Cs[3,3'-Fe(8-I-1,2-C₂B₉H₁₁)₂, abbreviated as Cs[4].

Figure S20. ${}^{1}H{}^{11}B{}$ NMR of Cs[4] in CD₃COCD₃.

Figure S21. ¹H NMR of Cs[4] in CD₃COCD₃.

Figure S22. ¹¹B $\{^{1}H\}$ NMR of Cs[4] in CD₃COCD₃.

Figure S23. ¹¹B NMR of Cs[4] in CD₃COCD₃.

Characterization of Na[3,3'-Fe(8-I-1,2-C₂B₉H₁₁)₂]·2.5H₂O, abbreviated as Na[4].

Figure S24. IR spectra of Na[4].

Figure S25. MALDI-TOF-MS experimental spectrum of Na[4]. Inset the theoretical MS.

Figure S28. ${}^{11}B{}^{1}H{}$ NMR of Na[4] in CD₃COCD₃.

Figure S29. ¹¹B NMR of Na[4] in CD₃COCD₃.

Figure S30. TGA/DSC spectra of Na[4].

Figure S31. a) ¹¹B-NMR spectra of Na[6] in D₂O with the chemical shift numbers of the Boron vertices B(6), B(9,12), B(5,11), B(10), B(4,7) and B(8) from down to high field. b) ¹H-NMR spectra of Na[6] in D₂O.

Figure S32. ¹¹B{¹H}-NMR spectra of Na[6] in D_2O in the concentration range of 5-100 mM.

Figure S33. ${}^{1}H{}^{11}B{}$ -NMR spectra of Na[5] in D₂O at different concentrations.

Figure S34. ¹¹B $\{^{1}H\}$ NMR spectra of Na[5] in D₂O at different concentrations.

Table	S1 .	Crystal	data	and	structure	refinement	for	[(H ₃ O	$(H_2O)_2$	5][2,2'	-Co(1,	$7-C_2E$	$B_9H_{11})_2],$
H[5], a	and (Cs(MeCl	N)[8,8	8' - I ₂ -	-Fe(1,2 C	$_{2}B_{9}H_{10})_{2}], C$	[4]						

Compound	[(H ₃ O)(H ₂ O) ₅][2,2'-	Cs(MeCN)[8,8'-I ₂ -
	$Co(1,7-C_2B_9H_{11})_2]$	$Fe(1,2 C_2B_9H_{10})_2]$
Empirical formula	C ₄ H ₃₅ B ₁₈ CoO ₆	C ₆ H ₂₃ B ₁₈ CsFeI ₂ N
Formula weight	432.83	746.39
Crystal system	Monoclinic	Monoclinic
Space group	C2/m	C2/c
a (Å)	8.0526(3)	21.9678(7)
b (Å)	11.2324(5)	12.5135(4)
c (Å)	12.1312(6)	8.9201(3)
$\Box \Box (^{0})$	90	90
$\Box \Box (^{0})$	103.702(2)	105.4220(10)
$\Box \Box (^{0})$	90	90
V(Å ³)	1066.04(8)	2363.79(13)
Ζ	2	4
F(000)	448	1372
Theta range for data collection	3.17 to 27.50°	2.198 to 29.470°
Reflections collected	26669	11149
Independent reflections	1284	2022 [R(int) = 0.0533]
Data / restraints / parameters	1284 / 0 / 80	2022 / 0 / 137
Goodness-of-fit on F ²	1.202	1.103
R1 (I>2□□I))	0.0273	0.0409
wR2 (I>2 (I))	0.0725	0.1347
R1 (all data)	0.0305	0.0433
wR2 (all data)	0.0752	0.1399

Cyclic voltammetry studies.

Figure S35. The CV wave of Na[1] $E_{1/2} = -1.81V$ versus F_c^+/F_c .

Figure S37. The CV wave of Na[3]. $E_{1/2} = -1.33V$ versus F_c^+/F_c .

Figure S38. The CV wave of Na[4] such as $E_{1/2} = -0.36$ V versus F_c^+/F_c .

Figure S39. The CV wave of Na[5]. $E_{1/2} = -1.55$ V versus F_c^+/F_c .

Figure S40. The CV wave of Na[6]. $E_{1/2} = -0.79$ V versus F_c^+/F_c .

Figure S41. Electrolysis behavior of [6]⁻.

On the left (brown): natural state (Fe³⁺, d⁵); on the right (pink): reduced state (Fe²⁺ d⁶).

Solubility studies.

Figure S42. Solubility study of Na[3,3'-Fe(1,2-C₂B₉H₁₁)₂], Na[1] in H₂O; Plot of absorbance *vs.* concentration.

Solubility of Na[2] in water 1.247±0.018 M or 484.72±7.01 g/L

Figure S43. Solubility study of Na[4] in water; Plot of absorbance vs. concentration

Solubility of Na[4] in water 0.374±0.006 M or 240.14±3.80 g/L

Figure S44. Solubility study of Na[5] in H₂O. Plot of absorbance vs. concentration

Solubility of Na[5]= 1726 mM.

Solubility of Na[6] in water 1.400±0.025 M or 544.56±9.86 g/L

Lipophilicity Studies.

Figure S46. Lipophilicity of Na[5].

Sample	Amount of Na[mCOSA N]	Na[mCOSAN] concentration in 1-octanol	Na[mCOSAN] concentratio n in water	Ρ	Log P
1	1.27 mg	1.04 mM	0.037 mM	27.94	1.44
2	3.27 mg	2.48 mM	0.296 mM	8.37	0.92
3	4.95 mg	4.04 mM	0.167 mM	24.16	1.38
4	2.72 mg	2.22 mM	0.076 mM	29.17	1.46
5	2.74 mg	2.20 mM	0.095 mM	23.07	1.36

Average P	Average log P
26.09±2.92	1.41±0.05

Figure S47. Lipophilicity of Na[2]

Sample	Amount of Na[FESAN]	Na[FESAN] concentration in 1-octanol	Na[FESAN] concentratio n in water	Ρ	Log P
1	3.104 mg	3.074 mM	0.077 mM	39.44	1.59
2	2.956 mg	2.99 mM	0.063 mM	47.20	1.67
3	5.624 mg	5.61 mM	0.108 mM	50.48	1.70

Average P	Average log P
45.70±5.66	1.65±0.05

Figure S48. Lipophilicity of Na[4]

Sample	Amount of Na[I ₂ - FESAN]	Na[I ₂ -FESAN] concentration in 1-octanol	Na[I ₂ -FESAN] concentratio n in water	Ρ	Log P
1	5.92 mg	3.66 mM	0.041 mM	89.08	1.949
2	4.21 mg	1.84 mM	0.017 mM	103.94	2.016
3	4.56 mg	2.14 mM	0.020 mM	104.90	2.021
5	1.00 118	2.2.1.1.1.1.1	0.020	10 1.50	LIGET

Average P	Average log P
99.31±8.86	1.99±0.04

Figure S49. Lipophilicity of Na[6].

Sample	Amount of Na[<i>m</i> -FESAN]	Na[<i>m</i> -FESAN] concentration in 1-octanol	Na[<i>m</i> -FESAN] concentration in water	Ρ	Log P
1	0.865 mg	1.34 mM	0.040 mM	33.27	1.52
2	1.327 mg	2.17 mM	0.061 mM	35.43	1.55
3	1.704 mg	2.67 mM	0.072 mM	37.03	1.57

Average P	Average log P
35.24±1.88	1.55±0.02

Figure S50. Dynamic lattice scattering of Na[5] in H₂O (a) Size distribution by Intensity and (b) Raw correlation data presentation

References

¹ a) M. F. Hawthorne, D. C. Young and P. A. Wegner, Carbametallic boron hydride derivatives.
I. Apparent analogs of ferrocene and ferricinium ion, *J. Am. Chem. Soc.*, 1965, 87, 1818-1819.
b) M. F. Hawthorne and T. D. Andrews, Carborane analogues of cobalticinium ion, *J. Chem. Soc., Chem. Comm.*, 1965, 443-444. c) M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, Jr and P. A. Wegner, pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs, *J. Am. Chem. Soc.*, 1968, 90, 879-896. d) C. Viñas, J. Pedrajas, J. Bertran, F. Teixidor, R. Kivekäs and R. Sillanpää, Synthesis of Cobaltabis(dicarbollyl) Complexes Incorporating Exocluster SR Substituents and the Improved Synthesis of [3,3'-Co(1-R-2-R'-1,2-C2B9H9)2]- Derivatives, *Inorg. Chem.*, 1997, 36, 2482-2486.

² a) R. A. Wiesboeck and M. F. Hawthorne, Dicarbaundecaborane(13) and Derivatives, J. Am. Chem. Soc., 1964, 86 (8), 1642-1643. b) M. G. Davidson, M. A. Fox, T. G. Hibbert, J. A. K. Howard, A. Mackinnon, I. S. Neretin and K. Wade, Deboronation of ortho-carborane by an iminophosphorane: crystal structures of the novel carborane adduct nido- $C_2B_{10}H_{12}\cdots$ HNP(NMe₂)₃ and the borenium salt [(Me₂N)₃PNHBNP(NMe₂)₃]₂O²⁺(C₂B₉H₁₂-)². Chem. Comm., 1999, 1649-1650. c) M. A. Fox, W. R. Gill, P. L. Herbertson, J. A. H. MacBride, K. Wade and H. M. Colquhoun, Deboronation of C-substituted ortho- and meta-closocarboranes using "wet" fluoride ion solutions, Polyhedron, 1996, 15, 565-571. d) M. A. Fox, J. A. H. MacBride and K. Wade, Fluoride-ion deboronation of p-fluorophenyl-ortho- and -metacarboranes. NMR evidence for the new fluoroborate, HOBHF2-, Polyhedron, 1997, 16, 2499-2507. e) Y. Taoda, T. Sawabe, Y. Endo, K. Yamaguchi, S. Fujii and H. Kagechika, Identification of an intermediate in the deboronation of ortho-carborane: an adduct of orthocarborane with two nucleophiles on one boron atom, Chem. Comm., 2008, 2049-2051. f) Y. Yoo, J. W. Hwang and Y. Do, Facile and mild deboronation of o-carboranes using cesium fluoride, *Inorg. Chem.*, 2001, 40, 568-570. g) L. I. Zakharki and V. N. Kalinin, Reaction of Amines with Barenes, *Tetrahedron Lett.*, 1965, 407-409. h) L. I. Zakharkin and V. S. Kirillova, Cleavage of Ortho-Carboranes to (3)-1,2-Dicarbaundecarborates by Amines, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1975, 24, 2484-2486. i) M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe and P. A. Wegner, Preparation and Characterization of (3)-1,2- and (3)-1,7-Dicarbadodecahydroundecaborate(-1) Ions, *J. Am. Chem. Soc.*, 1968, 90, 862-868.

³ I. Bennour, A. Cioran, F. Teixidor and C. Viñas, 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes, *Green Chem.*, 2019, 21, 1925-1928.

⁴ A. Zaulet, F. Teixidor, P. Bauduin, O. Diat, P. Hirva, A. Ofori and C. Viñas. Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters, *J. Organomet. Chem.*, 2018, 865, 214-225.

⁵ T. Garcia-Mendiola, V. Bayon-Pizarro, A. Zaulet, I. Fuentes, F. Pariente, F. Teixidor, C. Viñas and E. Lorenzo, Metallacarboranes as tunable redox potential electrochemical indicators for screening of gene mutation, *Chem. Sci.*, 2016, 7, 5786–5797.

⁶ This article.

⁷ I. Rojo, F. Teixidor, C. Viñas, R. Kivekäs and R. Sillanpää, Methylation and Demethylation in Cobaltabis(dicarbollide) Derivatives, *Organometallics*, 2003, 22, 4642-4646.

⁸ L. Matel, F. Macásek, P. Rajec, S. Hermánek, J. Plesek. Polyhedron 1982, 1, 511-519.