Supporting information

Understanding the Role of Flux, Pressure and Temperature on Polymorphism in ThB_2O_5

Figure S1. SEM image and EDS measurement for β -ThB₂O₅

Th(1)-O(3)#1	2.302(5)	Th(1)-O(3)#2	2.302(5)
Th(1)-O(2)#3	2.370(6)	Th(1)-O(1)	2.583(6)
Th(1)-O(4)#4	2.520(7)	Th(1)-O(2)	2.514(6)
Th(1)-O(3)#5	2.539(5)	Th(1)-O(3)#6	2.539(5)
Th(1)-O(3)	3.067(6)	Th(1)-O(3)	3.067(6)
B(1)-O(1)	1.472(11)	B(1)-O(3)	1.455(7)
B(1)-O(4)	1.471(11)	B(1)-O(3)#7	1.455(7)
B(2)-O(2)	1.356(11)	B(2) - O(1)	1.380(11)
B(2)-O(4) #3	1.390(11)		

Table S1. Selected Important Bond Lengths (angstroms) for β -ThB₂O₅.

Symmetry transformations used to generate equivalent atoms:

#1 -x, -y, -z+2, #2 -x, y+1/2, -z+2, #3 x-1, y, z, #4 x+1, y, z+1, #5 x, -y+1/2, z+1, #6 x, y, z+1, #7 x, - y+1/2, z.

Figure S2. PXRD patterns of High-Pressured (4GPa) phase of ThB₂O₅, calculated α -, β -ThB₂O₅ and the mixture of α - and β -ThB₂O₅.

Figure S3. Thermal dependence of the *a*, *b*, *c* and β lattice parameters of *a*-ThB₂O₅ determined from refinements against *in situ* PXRD data using the Le Bail method.

•

Figure S4. Thermal dependence of the lattice volume normalized per formula unite.

Figure S5. HT-PXRD pattern of a mixture of α -(34 %), β -ThB₂O₅ (66 %) and PXRD pattern of calculated ThO₂.

Figure S6. The Th-coordination environment with Th-O bond lengths in the structure of β -ThB₂O₅. Thorium atom, B1 atom are shown in yellow and cyan, oxygen atoms in red.

Figure S7. The 3D Th borate framework formed by B-O chains link the 2D Th-based sheets in β -ThB₂O₅, through corner (BO₄), edge (BO₃), and face (BO₄) sharing. Thorium polyhedra, BO₃ triangles and BO₄ tetrahedra are shown in yellow, green and cyan.

Figure S8. Four membered rings along the *a*-axis in the structure of β -ThB₂O₅.

Figure S9. Representation of the α -ThB₂O₅ structure. A one-capped distorted thorium pentagonal bipyramid (a), a four-fold Th-coordinated thorium polyhedron (b), the 3D thorium network structure along the *b*-axis (c), a B₂O₅ dimer (d), the 3D thorium borate framework structure along the *b*-axis (e). ThO₈ polyhedra and BO₃ triangles are shown in yellow and green, O atoms are shown in red.

Figure S10. Schlegel projections of the Voronoi–Dirichlet polyhedral (VDP) with $4^5 \cdot 5^2 \cdot 6^5$ (β -ThB₂O₅) and $3^4 \cdot 4^4 \cdot 5^8 \cdot 10^4$ (α -ThB₂O₅) combinatorial–topological types (CTTs).

Figure S11. Cationic topology representation of β -ThB₂O₅. (a) A zigzag boron chain …B1B2B1B2B1…along the *a*-axis, (b) a 2D {3⁶} Th-sheet parallel to the *ab*-plain, (c) Topological view of the 3D new 3-nodal cation network along *a*-axis with a point symbol of {3⁴, 4¹⁰, 5¹⁰, 6^4 } {3⁴, 4¹⁰, 5⁶, 6} {3⁴, 4⁴, 5²}. The Th cations are shown as 8-connected nodes with blackballs, B1 and B2 are 7 and 5-connected nodes as hollow balls.

Figure S12. TG and DSC curves of α -ThB₂O₅ from 200 to 1200 °C.

Figure S13. Raman spectra of compound β -ThB₂O₅ (a) and α -ThB₂O₅ (b) presented in the range 100 to 1500 μ m.

Table S2. The lattice parameters of α -ThB₂O₅ and β -ThB₂O₅ obtained by DFT studies. In parentheses we report the offset from the measured values.

	β -ThB ₂ O ₅	a-ThB ₂ O ₅
А	4.239 (-0.014)	11.643 (+0.098)
В	6.934 (+0.061)	7.037 (+0.100)
С	6.339 (+0.015)	10.258 (-0.005)
Alpaha	90	90
Betha	106.69 (+0.374)	100.68 (-0.82)
Gamma	90	90
Vol	178.47 (+1.03)	825.96 (+20.52)

Table S3.Computed and measured IR bands positions. The frequencies are reported in cm⁻¹.

β -ThB ₂ O ₅		α -ThB ₂ O ₅	
computed	experimental	computed	experimental
1411	1438,1385	1400	1414
1294	1268	1250, 1252	1257
1078	1072	1028	1027
990,945,914	928	634,630,618	652
790	807	513,508,505	529
715	735		
628	652		
562, 543	580,557		