Supporting information

Understanding the Role of Flux, Pressure and Temperature on Polymorphism in $\mathrm{ThB}_{2} \mathrm{O}_{5}$

Figure S1. SEM image and EDS measurement for $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$

Table S1. Selected Important Bond Lengths (angstroms) for $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$.

$\mathrm{Th}(1)-\mathrm{O}(3) \# 1$	$2.302(5)$	$\mathrm{Th}(1)-\mathrm{O}(3) \# 2$	$2.302(5)$
$\mathrm{Th}(1)-\mathrm{O}(2) \# 3$	$2.370(6)$	$\mathrm{Th}(1)-\mathrm{O}(1)$	$2.583(6)$
$\mathrm{Th}(1)-\mathrm{O}(4) \# 4$	$2.520(7)$	$\mathrm{Th}(1)-\mathrm{O}(2)$	$2.514(6)$
$\mathrm{Th}(1)-\mathrm{O}(3) \# 5$	$2.539(5)$	$\mathrm{Th}(1)-\mathrm{O}(3) \# 6$	$2.539(5)$
$\mathrm{Th}(1)-\mathrm{O}(3)$	$3.067(6)$	$\mathrm{Th}(1)-\mathrm{O}(3)$	$3.067(6)$
$\mathrm{B}(1)-\mathrm{O}(1)$	$1.472(11)$	$\mathrm{B}(1)-\mathrm{O}(3)$	$1.455(7)$
$\mathrm{B}(1)-\mathrm{O}(4)$	$1.471(11)$	$\mathrm{B}(1)-\mathrm{O}(3) \# 7$	$1.455(7)$
$\mathrm{B}(2)-\mathrm{O}(2)$	$1.356(11)$	$\mathrm{B}(2)-\mathrm{O}(1)$	$1.380(11)$
$\mathrm{B}(2)-\mathrm{O}(4) \# 3$	$1.390(11)$		

Symmetry transformations used to generate equivalent atoms:
$\# 1-x,-y,-z+2, \# 2-x, y+1 / 2,-z+2, \# 3 x-1, y, z, \# 4 x+1, y, z+1, \# 5 x,-y+1 / 2, z+1, \# 6 x, y, z+1$, \#7 x, $-\mathrm{y}+1 / 2$, z .

Figure S2. PXRD patterns of High-Pressured (4GPa) phase of $\mathrm{ThB}_{2} \mathrm{O}_{5}$, calculated $\alpha-, \beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$ and the mixture of α - and $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$.

Figure S3. Thermal dependence of the a, b, c and β lattice parameters of $a-\mathrm{ThB}_{2} \mathrm{O}_{5}$ determined from refinements against in situ PXRD data using the Le Bail method.

Figure S4. Thermal dependence of the lattice volume normalized per formula unite.

Figure S5. HT-PXRD pattern of a mixture of $\alpha-(34 \%), \beta-\mathrm{ThB}_{2} \mathrm{O}_{5}(66 \%)$ and PXRD pattern of calculated ThO_{2}.

Figure S6. The Th-coordination environment with Th-O bond lengths in the structure of $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$.
Thorium atom, B1 atom are shown in yellow and cyan, oxygen atoms in red.

Figure S7. The 3D Th borate framework formed by B-O chains link the 2D Th-based sheets in β ThB ${ }_{2} \mathrm{O}_{5}$, through corner $\left(\mathrm{BO}_{4}\right)$, edge $\left(\mathrm{BO}_{3}\right)$, and face $\left(\mathrm{BO}_{4}\right)$ sharing. Thorium polyhedra, BO_{3} triangles and BO_{4} tetrahedra are shown in yellow, green and cyan.

Figure S8. Four membered rings along the a-axis in the structure of β - $\operatorname{ThB}_{2} \mathrm{O}_{5}$.

Figure S9. Representation of the $\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$ structure. A one-capped distorted thorium pentagonal bipyramid (a), a four-fold Th-coordinated thorium polyhedron (b), the 3D thorium network structure along the b-axis (c), a $\mathrm{B}_{2} \mathrm{O}_{5}$ dimer (d), the 3D thorium borate framework structure along the b-axis (e). ThO_{8} polyhedra and BO_{3} triangles are shown in yellow and green, O atoms are shown in red.

Figure S10. Schlegel projections of the Voronoi-Dirichlet polyhedral (VDP) with $4^{5} \cdot 5^{2} \cdot 6^{5}$ (β $\left.\mathrm{ThB}_{2} \mathrm{O}_{5}\right)$ and $3^{4} \cdot 4^{4} \cdot 5^{8} \cdot 10^{4}\left(\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}\right)$ combinatorial-topological types (CTTs).

Figure S11. Cationic topology representation of $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$. (a) A zigzag boron chain \cdots B1B2B1B2B1 \cdots along the a-axis, (b) a 2D $\left\{3^{6}\right\}$ Th-sheet parallel to the $a b$-plain, (c) Topological view of the 3D new 3 -nodal cation network along a-axis with a point symbol of $\left\{3^{4}, 4^{10}, 5^{10}\right.$, $\left.6^{4}\right\}\left\{3^{4}, 4^{10}, 5^{6}, 6\right\}\left\{3^{4}, 4^{4}, 5^{2}\right\}$. The Th cations are shown as 8 -connected nodes with blackballs, B1 and B2 are 7 and 5-connected nodes as hollow balls.

Figure S12. TG and DSC curves of $\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$ from 200 to $1200^{\circ} \mathrm{C}$.

Figure S13. Raman spectra of compound $\beta-\operatorname{ThB}_{2} \mathrm{O}_{5}$ (a) and $\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$ (b) presented in the range 100 to $1500 \mu \mathrm{~m}$.

Table S2. The lattice parameters of $\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$ and $\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$ obtained by DFT studies. In parentheses we report the offset from the measured values.

	$\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$	$\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$
A	$4.239(-0.014)$	$11.643(+0.098)$
B	$6.934(+0.061)$	$7.037(+0.100)$
C	$6.339(+0.015)$	$10.258(-0.005)$
Alpaha	90	90
Betha	$106.69(+0.374)$	90
Gamma	90	$825.96(+20.52)$
Vol	$178.47(+1.03)$	

Table S3.Computed and measured IR bands positions. The frequencies are reported in $\mathbf{c m}^{-}$ ${ }^{1}$.

$\beta-\mathrm{ThB}_{2} \mathrm{O}_{5}$		$\alpha-\mathrm{ThB}_{2} \mathrm{O}_{5}$	
computed	experimental	computed	experimental
1411	1438,1385	1400	1414
1294	1268	1250,1252	1257
1078	1072	1028	1027
$990,945,914$	928	$634,630,618$	652
790	807	$513,508,505$	529
715	652		
628	580,557		
562,543			

