Electronic supplementary information for:

Towards a relationship between photoluminescence emissions and photocatalytic activity of Ag₂SeO₄: Combining experimental data and theoretical insights

Ivo M. Pinatti ^{a,b*}, Ana C. M. Tello ^{c,d}, Paula F. S. Pereira ^c, Aline B. Trench ^c, Marcio D. Teodoro ^e, Ieda L. V. Rosa ^c, Albérico B. F. da Silva ^d, Elson Longo ^c, Juan Andrés ^{b*}, and

Alexandre Z. Simões ^a

^a Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil.

^b Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló 12071, Spain.

^c CDMF, LIEC, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos 13565-590, Brazil. ^d São Carlos Institute of Chemistry, São Paulo University (USP), P.O. Box 676, São Carlos 13566-905, Brazil.

^e Physics Department, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos 13565-905, Brazil.

*corresponding authors: ivo.m.pinatti@unesp.br; andres@qfa.uji.es

Figure SI-1. Rietveld refinement plot of (a) Ag₂SeO₄-SC, (b) Ag₂SeO₄-UP, (c) Ag₂SeO₄-CP and (d) Ag₂SeO₄-MH microcrystals.

Figure SI-2. Core level spectra of Ag 3d of the (a) Ag_2SeO_4 -SC, (b) Ag_2SeO_4 -UP, (c) Ag_2SeO_4 -CP, and (d) Ag_2SeO_4 -MH samples.

Figure SI-3. Core level spectra of Se 3p of the (a) Ag_2SeO_4 -SC, (b) Ag_2SeO_4 -UP, (c) Ag_2SeO_4 -CP, and (d) Ag_2SeO_4 -MH samples.

Figure SI-4. Core level spectra of O 1s of the (a) Ag_2SeO_4 -SC, (b) Ag_2SeO_4 -UP, (c) Ag_2SeO_4 -CP, and (d) Ag_2SeO_4 -MH samples.

Figure SI-5. Band gap energy for the (a) Ag₂SeO₄-SC, (b) Ag₂SeO₄-UP, (c) Ag₂SeO₄-CP, and (d) Ag₂SeO₄-MH samples.

Figure SI-6. Crystals shape theoretically modeled by the Wulff construction and their energy relative surface for Ag₂SeO₄. *E(hkl)* in Jm⁻².

Figure SI-7. Geometric structure and DOS of surface atoms in the relaxed surface slab: (a-b) (100) surface, (c-d) (010)/001 surfaces, and (e-f) (101) surface

Figure SI-8. Geometric structure and DOS of surface atoms in the relaxed surface slab: (a-b) (011) surface, (c-d) (110) surface, and (e-f) (111) surface

Figure SI-9. Geometric structure and DOS of surface atoms in the relaxed surface slab: (a-b) (012) surface, (c-d) (021) surface, and (e-f) (121) surface

Table SI-1. 2D lattice parameters of surface primitive cell, Area of surface in nm^2 , number of bulk units (*n*) used in the slab construction and number of layers in the optimized slab.

Surface	2D Lattice parameter	Area	n	layers
(100)	$a = 8.483 \text{ A} \ b = 8.062 \text{ A}$ $\gamma = 95.247^{\circ}$	0.709	4	24
(010)	a = 6.190 A b = 7.057 A $\gamma = 116.014^{\circ}$	0.393	3.5	35
(001)	a = 6.039 A b = 6.089 A $\gamma = 119.731^{\circ}$	0.335	3.5	21
(101)	$a = 7.041 \text{ A} \ b = 11.146 \text{ A}$ $\gamma = 90^{\circ}$	0.784	5	25
(011)	a = 6.076 A b = 8.678 A $\gamma = 90^{\circ}$	0.521	4	28
(110)	a = 6.522 A b = 12.543 A $\gamma = 90^{\circ}$	0.813	6	42
(111)	$a = 6.219 \text{ A} \ b = 7.112 \text{ A}$ $y = 100.722^{\circ}$	0.440	3	42
(012)	a = 6.057 A $b = 12.851 A\gamma = 103.887^{\circ}$	0.780	5	70
(021)	a = 6.198 A $b = 13.802 Av = 99.904^{\circ}$	0.864	4	56
(121)	a = 6.819 A $b = 15.477 A\gamma = 95.345^{\circ}$	0.112	5	55

Table SI-2. Atomic positions of the Ag_2SeO_4 microcrystals.

Atoms _	А	.g ₂ SeO ₄ -SO	2	А	.g ₂ SeO ₄ -Ul	P
	X	У	Z	X	У	Z
Ag1	0.1250	0.4475	0.1250	0.1250	0.4475	0.1250
Se1	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
01	0.2725	0.0281	0.0468	0.2995	0.0321	0.0416

Atoms _	А	g ₂ SeO ₄ -Cl	P	Ag ₂ SeO ₄ -MH					
	X	У	Z	X	У	Z			
Ag1	0.1250	0.4475	0.1250	0.1250	0.4475	0.1250			
Se1	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250			
01	0.2450	0.0652	0.0196	0.2634	0.0251	0.0413			

Paramatars	Samples										
T at a meter s	Ag ₂ SeO ₄ -SC	Ag ₂ SeO ₄ -UP	Ag ₂ SeO ₄ -CP	Ag ₂ SeO ₄ -MH							
Source	Cu Ka	Cu Ka	Cu Ka	Cu Ka							
Chemical formula	Ag_2SeO_4	Ag_2SeO_4	Ag_2SeO_4	Ag_2SeO_4							
Formula weight	358.69	358.69	358.69	358.69							
Temperature	ambient	ambient	ambient	ambient							
Pressure	ambient	ambient	ambient	ambient							
Wavelength (Å)	1.5406	1.5406	1.5406	1.5406							
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic							
Space group (No.)	Fddd	Fddd	Fddd	Fddd							
<i>a</i> (Å)	6.05142(7)	6.05279(10)	6.05335(17)	6.05196(10)							
b (Å)	10.39899(16)	10.40138(24)	10.39740(25)	10.39745(23)							
<i>c</i> (Å)	12.98369(11)	12.98497(16)	12.98864(18)	12.98219(13)							
α (°)	90.0	90.0	90.0	90.0							
β (°)	90.0	90.0	90.0	90.0							
γ (°)	90.0	90.0	90.0	90.0							
V (Å ³)	817.047(16)	817.499(26)	817.493(32)	816.903(24)							
Z	8	8	8	8							
<i>d</i> -space range (Å)	0.94-5.77	0.94-5.77	0.94-5.77	0.94-5.77							
χ^2	1.22	1.34	1.35	1.27							
R_p (%)	7.68	9.62	10.95	8.62							
R_{wp} (%)	10.33	13.34	14.98	11.37							

 Table SI-3. Crystallographic data of Rietveld refinement.

 $R_p = profile R$ -factor; $R_{wp} = weighted profile R$ -factor

Samples	Elements		Ag	3d			Se 3p O 1s						
	oxidation states	А	\mathbf{g}^+	А	g ⁰	Se	Se ⁶⁺		O ²⁻				
	spin-orbit	3d=/2	3d2/2	3d=12	3d _{3/2}	3n _{2/2}	3n _{1/2}	3n	Lattice	Oxygen	Hydroxyl		
	components	0 U 5/2	C 43/2	C 43/2		ep 3/2	OP 1/2	υp	oxygen	vacancies	group		
Ag ₂ SeO ₄ -SC	Position (eV)	367.3	373.3	368.1	374.1	165.6	171.3	-	530.8	532.3	533.8		
	Conc. (%)	29.64	28.65	21.21	20.50	51.02	48.98	-	47.03	45.88	7.09		
	Position (eV)	367.3	373.3	368.2	374.2	165.6	171.3	-	530.8	532.3	533.8		
Ag20004-01	Conc. (%)	33.95	32.81	16.90	16.34	51.02	48.98	-	55.60	38.30	6.10		
Ag.SeOCP	Position (eV)	367.3	373.3	368.1	374.1	165.6	171.3	-	530.8	532.3	533.8		
Ag25004-01	Conc. (%)	29.61	28.62	21.24	20.53	51.02	48.98	-	61.14	32.04	6.82		
Ag ₂ SeO ₄ -MH	Position (eV)	367.7	373.7	368.6	374.6	165.9	171.8	160.3	531.5	533.0	534.5		
	Conc. (%)	34.12	32.98	16.73	16.17	48.40	46.47	5.12	43.52	52.94	3.54		

Table SI-4. XPS elements positions and concentration of the area components for Ag, Se and O of the Ag_2SeO_4 samples.

Morphologies	Ideal		Ι	4]	В		С]	D]	E]	F	(Ĵ
Surface	Esurf	C_i														
(100)	0.93	-	0.93	-	0.93	-	0.93	-	0.93	-	0.40	21.71	0.93	-	0.93	-
(010)	0.22	9.84	0.41	-	0.80	-	0.80	-	0.80	-	0.22	44.40	0.80	-	0.80	-
(001)	0.22	14.29	0.46	-	0.17	34.72	0.17	39.98	0.22	29.04	0.30	32.56	0.19	41.94	0.19	48.62
(101)	0.28	-	0.28	-	0.28	-	0.50	-	0.50	-	0.55	-	0.28	28.99	0.52	-
(011)	0.23	12.84	0.32	-	0.50	-	0.50	-	0.50	-	0.80	-	0.61	3.98	0.61	3.30
(110)	0.34	-	0.37	-	0.34	-	0.34	-	0.34	-	0.55	-	0.50	-	0.50	-
(111)	0.19	63.07	0.19	100.0	0.24	67.44	0.27	59.43	0.29	65.29	0.80	-	0.44	17.14	0.44	41.47
(012)	0.64	-	0.64	-	0.64	-	0.64	-	0.64	-	0.64	-	0.64	-	0.64	-
(021)	0.54	-	0.54	-	0.54	-	0.54	-	0.54	-	0.54	-	0.80	-	0.80	-
(121)	0.61	-	0.61	-	0.61	-	0.40	0.06	0.35	5.67	0.61	-	0.57	7.95	0.57	6.61
E_{poly}	0.	20	0.	19	0.	21	0.	24	0.	24	0.	29	0.	31	0.	33

Table SI-5. Surface energy (E_{surf} , Jm⁻²), contribution of the surface area to the total area (C_i , %), and the polyhedron energy (E_{poly} , Jm⁻²) for each of the crystal morphology of Ag₂SeO₄ obtained by SC, UP, CP and MH method.