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1. Representative NMR spectra
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Figure S1: 1H NMR (298 K, CDCl3, 400 MHz) spectrum of the PPO/POP ligand.

Figure S2:31P{1H} NMR (298 K, CDCl3, 162 MHz) spectrum of the PPO/POP ligand.
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Figure S3: 1H NMR (298 K, D8-THF, 400 MHz) spectrum of [YCl3(THF)2(PPO)]∙0.5THF (2∙0.5THF). Note: the solvent 
residual peaks of THF overlaps with the signals of the coordinated THF molecules.
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Figure S4: 31P{1H} NMR (298 K, D8-THF, 162 MHz) spectrum of [YCl3(THF)2(PPO)]∙0.5THF (2∙0.5THF). 
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Figure S5: 1H NMR (298 K, CD2Cl2, 400 MHz) spectrum of [Cu2(MeCN)4(μ2-POP)2](PF6)2 (3). 
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Figure S6: 31P{1H} NMR (298 K, CD2Cl2, 162 MHz) spectrum of [Cu2(MeCN)4(μ2-POP)2](PF6)2 (3). 
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Figure S7: 31P{1H} NMR (298 K, CDCl3, 162 MHz) spectrum of [Au2Cl2(μ2-POP)] (4) and [AuCl(PPO)] (4’). Note: a small 
amount of impurities (30.8 ppm) was observed, since 4 is readily hydrolyzed.
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Figure S8: 1H NMR (298 K, CDCl3, 400 MHz) spectrum of [Au2(μ2-POP)2](OTf)2∙2.3DCM (5∙2.3DCM). 
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Figure S9: 31P{1H} NMR (298 K, CDCl3, 162 MHz) spectrum of [Au2(μ2-POP)2](OTf)2∙2.3DCM (5∙2.3DCM). 
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2. Single-crystal X-ray crystallography

Complex 2∙0.5THF: A co-crystallized THF molecule is disordered about an inversion center.

Complex 3: The complex crystallized on an inversion center. The second acetonitrile molecule (N2) 
must have an occupancy of 50% because of its vicinity to an inversion center does not allow a full 
occupancy. In fact, the model refines well with this. An additional disorder related to the former is 
observed for the Cu atom which splits to two positions corresponding to two different coordination 
environments: One for a coordination by three (P1,P2,N1) donor atoms and one for the a coordination 
of four (P1,P2,N1,N2) donor atoms. Because the Cu site with four instead of three donor atoms is 
caused by the coordination of the second acetonitrile (N2) and thus its occurrence is linked to the 
presence of the latter, the occupancies of this Cu position and in turn also the one of the second one 
were fixed to 50%.

Complex 5∙2.3DCM: When modeling the DCM molecule which is disordered about a twofold 
rotation axis (C54), very large thermal ellipsoids as well as large regions of negative electron density 
around the atoms were observed which suggest only a partial occupancy. For this reason, its 
occupancy was set free and refined indeed satisfactorily.

Table S1: Crystallographic parameters of the complexes 1–5. 

Compound 1 2∙0.5THF 3 4 5∙2.3DCM
CCDC No. 2163970 2163971 2163973 2163972 2163974
Formula C48 H40 Cl2 

Fe O2 P4
C34 H40 Cl3 
O3.50 P2 Y

C54 H49 Cu2 
F12 N3 O2 
P6

C24 H20 Au2 
Cl2 O P2

C52.28 
H44.56 Au2 
Cl4.56 F6 O8 
P4 S2

Formula weight 899.43 761.86 1312.86 851.17 1658.48
Crystal system orthorhombic triclinic triclinic monoclinic monoclinic
Space group Pna21 P1̅ P1̅ P21/c C2/c
T [K] 100 100 100 100 150
a [Å] 18.2692(8) 10.0759(11) 10.708(6) 8.9878(11) 20.9822(6)
b [Å] 10.0180(4) 10.3953(13) 12.106(8) 16.301(2) 15.6904(3)
c [Å] 23.2815(8) 16.487(2) 12.285(4) 16.7718(18) 35.7489(10)
α [°] 90 87.021(11) 112.48(4) 90 90
β [°] 90 86.896(10) 96.83(4) 102.113(9) 102.180(2)
γ [°] 90 81.16(4) 104.09(4) 90 90
V [Å3] 4261.0(3) 1702.2(4) 1386.8(13) 2402.6(5) 11504.3(5)
Z 4 2 1 4 8
Radiation type Mo-Kα Mo-Kα Mo-Kα Mo-Kα Mo-Kα
Temp. [K] 100 100 100 100 150
ρ(calcd) [g·cm–3] 1.402 1.486 1.572 2.353 1.915
μ [mm-1] 0.669 2.078 1.025 12.569 5.563
F(000) 1856 784 666 1576 6430
Cryst. size [mm3] 0.118 x 

0.112 x 
0.052

0.179 x 0.130 
x 0.080

0.208 x 0.164 
x 0.080

0.308 x 0.241 
x 0.122

0.776 x 0.473 
x 0.276

θ range [°] 2.213-30.321 2.048-31.836 1.846-32.049 2.318-31.574 1.634-25.576
Limiting indices -23<=h<=25

-12<=k<=13
-32<=l<=32

-14<=h<=13
-15<=k<=15
-21<=l<=22

-15<=h<=15
-18<=k<=17
-17<=l<=17

-10<=h<=13
-16<=k<=21
-22<=l<=22

-25<=h<=25
-19<=k<=17
-43<=l<=43

Reflections 
collected/uniquea

46568 / 
11147 
[R(int) = 
0.0491]

20687 / 9113 
[R(int) = 
0.0647]

17633 / 7480 
[R(int)= 
0.0808]

14860 / 6619 
[R(int) = 
0.0264]

66001 / 
10752 [R(int) 
= 0.0312]
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Data/restraints/
param

11147 / 1 / 
514

9113 / 0 / 410 7480 / 0 / 364 6619 / 0 / 280 10752 / 3 / 
698

Completeness to 
θ = 25.242° [%]

100.0 99.8 99.9 99.8 100.0

Max. and min. 
transmission

0.9607 and 
0.5372

0.8501 and 
0.3293

0.9043 and 
0.4873

0.1555 and 
0.0471

0.2271 and 
0.0662

Final R indices (I 
> 2σ(I))b

R1 = 0.0380, 
wR2 = 
0.0784

R1 = 0.0751, 
wR2 = 0.1715

R1 = 0.0553, 
wR2 = 0.1440

R1 = 0.0297, 
wR2 = 0.0698

R1 = 0.0360, 
wR2 = 0.0901

R indices (all 
data)

R1 = 0.0544, 
wR2 = 
0.0850

R1 = 0.1143, 
wR2 = 0.2175

R1 = 0.0857, 
wR2 = 0.1596

R1 = 0.0379, 
wR2 = 0.0731

R1 = 0.0469, 
wR2 = 0.0958

Absolute 
Structure 
Parameter

-0.024(9) n/a n/a n/a n/a

Goodness 
of fitc on F2

1.016 1.035 1.054 1.025 1.058

Largest diff. peak 
and hole [Å−3]

0.479 and -
0.346

1.504 and -
1.856

1.195 and 
-0.602

1.404 and -
1.712

2.535 and -
1.194

a Rint = Σ|Fo
2 − Fo

2(mean)|/ΣFo
2, b R1 = Σ||Fo| − |Fc||/Σ|Fo|, wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2, c GooF 
= {S/(n −p)}1/2 = {Σ[w(Fo

2 − Fc
2)2]/(n − p)}1/2.
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3. Photo-luminescence spectroscopy

Table S2: Overview of the photo-luminescence studies concerning the PPO ligand and complexes 2, 3, 4 and 5. 

Compound T 
[K]

λex 
[nm]

λem 
[nm]

Lifetime 
[μs]

Quantum yield 
[%]

77 367 456 5.7 n.d. PPO ligand
298 367 456 5.9 2
77 352 414 5.8 n.d.2∙0.5THF
298 352 414 5.9 1
77 373 483 215.3, 66.7 n.d.3
298 400 440 4.6 0
77 361 499 7.2 n.d.4
298 387 470 5.5 0
77 350 445 6.8 n.d.5∙2.3DCM
298 364 452 5.9 2
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Figure S10: Photo-luminescence emission (PL) and excitation (PLE) spectra of the PPO ligand and complexes 2–5 at 
ambient temperature.   
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Table S2: Emission decay traces (black) of the PPO ligand and complexes 2–5 at 77 K and 298 K excited using a PTI 
XenonFlash™ with a pulse number of 10.000. The red lines indicate decay fits with monoexponential and biexponential 
curves.
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