Electronic Supplementary Information

Sensitization of Mn²⁺ luminescence via efficient energy transfer to suit the application of high color rendering WLEDs

Jianhong Ding,^a Meng Kuang,^{a*} Shuifu Liu,^b Ziheng Zhang,^c Kangrong Huang,^d Jiansheng Huo,^a Haiyong Ni,^a Qiuhong Zhang^{*a} and Junhao Li,^{*ab}

^a Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510630, P. R. China

^b School of Chemistry/School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China

^c Materials and Engineering Science Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, P. R. China

^d Department of Obstetrical, Maternal and Child Health Hospital of Longgang District of Shenzhen, Shenzhen 518172, P. R. China

* Corresponding authors.

E-mail address: <u>kuangmeng@irmgdas.gd.cn;</u>

wszqh@163.com;

lijh258@mail.sysu.edu.cn

Atom	Wyck.	x/a	y/b	z/c	Occ.
Sc1	4c	0.3899	1.2500	0.5727	1.0000
Cal	4c	0.5894	0.7500	0.8383	1.0000
B1	4c	0.3114	1.2500	0.8696	1.0000
01	4c	0.5051	0.7500	0.6176	1.0000
02	4c	0.2430	1.2500	0.7378	1.0000
03	4c	0.2603	0.7500	0.4898	1.0000
O4	4c	0.4394	0.7500	0.8704	1.0000

 Table S1 The refined structure parameters of SCB host.

Cell parameters: a = 10.1746 Å, b = 3.3704 Å, c = 9.4119 Å.

 $V = 322.75 \text{ Å}^3, Z = 4.$

Reliability factors: GOF = 2.86, $R_p = 5.70\%$.

Atom	Wyck.	x/a	y/b	z/c	Occ.
Sc1 (Ce)	4c	0.3904	1.2500	0.5722	1.0000
Cal	4c	0.5892	0.7500	0.8399	1.0000
B1	4c	0.3093	1.2500	0.8667	1.0000
01	4c	0.5040	0.7500	0.6174	1.0000
02	4c	0.2437	1.2500	0.7363	1.0000
03	4c	0.2643	0.7500	0.4893	1.0000
O4	4c	0.4382	0.2500	0.8738	1.0000

Table S2 The refined structure parameters of $Sc_{0.995}CaOBO_3: 0.005Ce^{3+}$ phosphor.

Cell parameters: a = 10.2330 Å, b = 3.3651 Å, c = 9.4137 Å.

 $V = 324.16 \text{ Å}^3, Z = 4.$

Reliability factors: GOF = 2.00, $R_p = 7.87\%$.

Atom	Wyck.	x/a	y/b	z/c	Occ.
Sc1	4c	0.3893	1.2500	0.5728	1.0000
Cal (Mn)	4c	0.5888	0.7500	0.8380	1.0000
B1	4c	0.3109	1.2500	0.8682	1.0000
01	4c	0.5047	0.7500	0.6178	1.0000
O2	4c	0.2424	1.2500	0.7377	1.0000
O3	4c	0.2598	0.7500	0.4889	1.0000
04	4c	0.4390	0.2500	0.8708	1.0000

Table S3 The refined structure parameters of $ScCa_{0.99}OBO_3: 0.010Mn^{2+}$ phosphor.

Cell parameters: a = 10.1678 Å, b = 3.3630 Å, c = 9.4035 Å.

 $V = 321.54 \text{ Å}^3, Z = 4.$

Reliability factors: GOF = 2.27, $R_p = 8.48\%$.

Table S4 The refined structure parameters of the $Sc_{0.995}Ca_{0.985}OBO_3:0.005Ce^{3+}$, $0.015Mn^{2+}$ phosphor.

Atom	Wyck.	x/a	y/b	z/c	Occ.
Sc1 (Ce)	4c	0.3900	1.2500	0.5723	1.0000
Cal (Mn)	4c	0.5888	0.7500	0.8395	1.0000
B1	4c	0.3095	1.2500	0.8681	1.0000
O1	4c	0.5043	0.7500	0.6187	1.0000
O2	4c	0.2412	1.2500	0.7367	1.0000
O3	4c	0.2608	0.7500	0.4911	1.0000
O4	4c	0.4392	0.2500	0.8713	1.0000

Cell parameters: a = 10.2184 Å, b = 3.3647 Å, c = 9.4133 Å.

 $V = 323.64 \text{ Å}^3, Z = 4.$

Reliability factors: GOF = 1.82, $R_p = 7.46\%$.

Fig. S1 The XRD patterns of $Sc_{1-x}CaOBO_3:xCe^{3+}$ (x = 0.005, 0.010, 0.015, 0.020, and 0.025) phosphors.

Fig. S2 The XRD patterns of $ScCa_{1-x}OBO_3:xMn^{2+}$ (*x* = 0, 0.005, 0.01, 0.02, and 0.03) phosphors.

Fig. S3 The Rietveld XRD refinement pattern of SCB host.

Fig. S4 PL spectrum of Sc_{0.995}CaOBO₃:0.005Ce³⁺ phosphor and its Gaussian peaks

Fig. S5 The PL spectra of $Sc_{1-x}CaOBO_3$: xCe^{3+} , (x = 0.005, 0.010, 0.015, 0.020, and 0.025) phosphors.

Fig. S5 shows the PL spectra of the SCB:xCe³⁺ (x = 0.005, 0.010, 0.015, 0.020 and 0.025) phosphors. As shown, the intensity of emission peaks increases with increase of Mn²⁺ doping concentration until x = 0.015, and then the intensity starts to decrease because of the concentration quenching phenomenon.

Fig. S6 The PL spectra of $ScCa_{1-x}OBO_3:xMn^{2+}$, (*x* = 0, 0.005, 0.01, 0.02, and 0.03) phosphors.

The concentration dependent PL spectra of the SCB: xMn^{2+} (x = 0.005, 0.010, 0.020and 0.030) phosphors is displayed in **Fig. S6**. As shown, the intensity of emission peaks increases with increasing Mn²⁺ doping concentration until x = 0.020, and then the intensity starts to decrease owing to the concentration quenching.

Fig. S7 The fluorescence lifetime test result of $Sc_{0.995}CaOBO_3:0.005Ce^{3+}$, $0.000Mn^{2+}$ phosphor.

Fig. S8 The fluorescence lifetime test result of $Sc_{0.995}Ca_{0.995}OBO_3:0.005Ce^{3+}$, $0.005Mn^{2+}$ phosphor.

Fig. S9 The fluorescence lifetime test result of $Sc_{0.995}Ca_{0.99}OBO_3:0.005Ce^{3+}$, $0.010Mn^{2+}$ phosphor.

Fig. S10 The fluorescence lifetime test result of $Sc_{0.995}Ca_{0.985}OBO_3:0.005Ce^{3+}$,

 $0.015 Mn^{2+}$ phosphor.

Fig. S11 The fluorescence lifetime test result of $Sc_{0.995}Ca_{0.98}OBO_3:0.005Ce^{3+}$, $0.020Mn^{2+}$ phosphor.

Fig. S12 The fluorescence lifetime test result of $Sc_{0.995}Ca_{0.975}OBO_3:0.005Ce^{3+}$, $0.025Mn^{2+}$ phosphor.

Fig. S13 The QY of the $ScCa_{0.98}OBO_3:0.020Mn^{2+}$ phosphor.

Fig. S14 The plot and linear fit of $\ln(I_0/I_t-1)$ versus 1/KT for $Sc_{0.995}Ca_{0.985}OBO_3$: 0.005Ce³⁺, 0.015Mn²⁺ phosphor.

The activation energy of thermal quenching (ΔE) was computed using the Arrhenius formula:

$$I_{T} = \frac{I_{0}}{1 + C \cdot \exp(-\frac{\Delta E}{kT})}$$
(1)

In formula (1), I_0 and I_T are the initial emission intensity and the emission intensity at temperature T, respectively. C is a constant, and k represents the Boltzmann's constant (8.629 × 10⁻⁵ eV/K). As shown in Fig. S14, the value of ΔE is calculated to be 0.317 eV.