Electronic Supporting Information (ESI)

Phosphorus guiding palladium: [4+4] metallomacrocyclic Pd["] complex and self-assembly of heterometallic Pd["]/Zn["] gridtype complex

Reike Clauss and Evamarie Hey-Hawkins

Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany

Table of Content

1. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H NC of 2 2	DESY)
2. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H NOES 3	5Y) of 5
3. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC) of 4	9
4. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H NOES 5	SY) of 14
5. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H NOES 6	SY) of 17
6. NMR Spectra (¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H}, ³¹ P{ ¹ H}, ¹ H- ¹ H COSY, ¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H NOES 7	SY) of 21
7. VT NMR Spectra (¹ H, ³¹ P{ ¹ H}) of 4 and 7	25
8. Reaction NMR Spectra	28
9. ¹ H DOSY NMR Spectra of Complexes 2–7	31
10. Mass Spectrometry	34
11. UV/Vis Spectroscopy	37
12. Additional Information on X-Ray Diffraction Analyses	39

Figure S2. $^{13}C{^{1}H}$ NMR spectrum of 2 in CD₃CN at 25 °C.

Figure S3. ${}^{19}F{}^{1}H$ NMR spectrum of 2 in CD₃CN at 25 °C.

Figure S5. ¹H-¹H COSY spectrum of **2** in CD₃CN at 25 °C.

Figure S6. $^{1}H^{-13}C$ HMBC spectrum of 2 in CD₃CN at 25 °C.

Figure S7. $^{1}H^{-13}C$ HSQC spectrum of 2 in CD₃CN at 25 °C.

Figure S8. ¹H-¹H NOESY spectrum of 2 in CD₃CN at 25 °C.

Figure S9. ¹H NMR spectrum of **3** in CD₃CN at 25 °C.

Figure S10. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of 3 in CD_3CN at 25 °C.

Figure S11. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum of 3 in CD_3CN at 25 °C.

Figure S12. ${}^{31}P{}^{1}H$ NMR spectrum of 3 in CD₃CN at 25 °C.

Figure S13. ¹H-¹H COSY spectrum of 3 in CD₃CN at 25 °C.

Figure S14. ^{1}H - ^{13}C HMBC spectrum of 3 in CD₃CN at 25 °C.

Figure S15. $^{1}H^{-13}C$ HSQC spectrum of **3** in CD₃CN at 25 °C.

Figure S16. $^{1}H^{-1}H$ NOESY spectrum of 3 in CD₃CN at 25 °C.

Figure S17. ¹H-¹H NOESY spectrum of **3** in CD₂Cl₂ at 25 °C.

Figure S18. ¹H NMR spectrum of 4 in CD₃CN at 25 °C.

Figure S20. ¹³C{¹H} NMR spectrum of 4 in CD₃CN at 25 °C.

Figure S24. $^{1}H^{-1}H$ COSY spectrum of of 4 in CD₃CN at 25 °C.

Figure S25. ¹H-¹³C HMBC spectrum of 4 in CD₃CN at 25 °C.

Figure S26. $^{1}H^{-13}C$ HSQC spectrum of 4 in CD₃CN at 25 °C.

Figure S27. ¹H-¹H NOESY spectrum of 4 in CD₃CN at 25 °C.

Figure S28. ¹H NMR spectrum of 5 in CD₃CN at 25 °C.

Figure S29. $^{13}C{^{1}H}$ NMR spectrum of 5 in CD₃CN at 25 °C.

Figure S30. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum of 5 in CD_3CN at 25 °C.

Figure S31. $^{31}P\{^{1}H\}$ NMR spectrum of 5 in CD₃CN at 25 °C.

Figure S33. $^{1}H^{-13}C$ HMBC spectrum of 5 in CD₃CN at 25 °C.

Figure S34. $^{1}H^{-13}C$ HSQC spectrum of 5 in CD₃CN at 25 °C.

Figure S35. ¹H-¹H NOESY spectrum of 5 in CD₃CN at 25 °C.

Figure S39. ³¹P{¹H} NMR spectrum of 6 in CD₃CN at 25 °C.

Figure S40. ¹H-¹H COSY spectrum of 6 in CD₃CN at 25 °C.

Figure S41. ¹H-¹³C HMBC spectrum of 6 in CD₃CN at 25 °C.

Figure S42. ¹H-¹³C HSQC spectrum of 6 in CD₃CN at 25 °C.

Figure S43. ¹H-¹H NOESY spectrum of 6 in CD₃CN at 25 °C.

Figure S44. ¹H NMR spectrum of **7** in CD₃CN at 25 °C.

Figure S45. $^{13}C{^1H}$ NMR spectrum of 7 in CD₃CN at 25 °C.

Figure S46. ${}^{19}F{}^{1}H$ NMR spectrum of 7 in CD₃CN at 25 °C.

Figure S47. ${}^{31}P{}^{1}H$ NMR spectrum of 7 in CD₃CN at 25 °C.

Figure S49. ¹H-¹H COSY spectrum of 7 in CD₃CN at 25 °C.

Figure S50. ^{1}H - ^{13}C HMBC spectrum of 7 in CD₃CN at 25 °C.

Figure S51. ¹H-¹³C HSQC spectrum of 7 in CD₃CN at 25 °C.

Figure S52. ¹H-¹H NOESY spectrum of 7 in CD₃CN at 25 °C.

7. VT NMR Spectra (${}^{1}H$, ${}^{31}P{}^{1}H$) of **4** and **7**

VT¹H NMR (400 MHz, CD₃CN) of 4

Figure S53. VT ¹H NMR spectra of **4** in CD₃CN from 25 °C to -25 °C.

VT¹H NMR (400 MHz, CD₃CN) of 4

Figure S54. VT 1 H NMR spectra of 4 (signal at 3.00 ppm at 25 °C) in CD₃CN from 25 °C to –25 °C.

VT ¹H NMR (400 MHz, CD₃CN) of 4

Figure S55. VT 1 H NMR spectra of 4 (signal at 7.36 ppm 25 °C) in CD₃CN from 25 °C to –25 °C.

VT ¹H NMR (400 MHz, CD₃CN) of 4

Figure S56. VT 1 H NMR spectra of 4 (signal at 8.60 ppm at 25 °C) in CD₃CN from 25 °C to -25 °C.

$\underline{VT^{31}P{}^{1}H}NMR$ (162 MHz, $\underline{CD_{3}CN}$) of 4

Figure S57. VT $^{31}P\{^{1}H\}$ NMR spectra of 4 in CD₃CN from 25 °C to –25 °C.

VT¹H NMR (400 MHz, CD₃CN) of 7

<u>VT ³¹P{¹H}NMR (162 MHz, CD₃CN) of 7</u>

Figure S59. VT ${}^{31}P{}^{1}H$ NMR spectra of 7 in CD₃CN from 25 °C to -5 °C.

8. Reaction NMR Spectra

Scheme S1. ¹H and ³¹P{¹H} NMR spectra of the reaction mixture of complex 4 with $[Pd(CH_3CN)_4](OTf)_2$ showing the formation of 3 and an unidentified species (X).

Reactions to form 7

Figure S60. ¹H and ³¹P{¹H} NMR spectra of the formation of 7 based on different building blocks.

Disassembly and reassembly of 7

Scheme S2. ^1H and $^{31}\text{P}\{^1\text{H}\}$ NMR spectra of the disassembly and reassembly of 7.

9. ¹H DOSY NMR Spectra of Complexes 2–7

Figure S61. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Pd_2(1)(CH_3CN)_2](OTf)_4$ (2) (8.64 mmol·L⁻¹, 25 °C) in CD₃CN.

Figure S62. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Pd(1)]_4(OTf)_8$ (3) (10.32 mmol·L⁻¹, 25 °C) in CD₃CN.

Figure S63. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Pd(1)_2](OTf)_2$ (4) (9.17 mmol·L⁻¹, 25 °C) in CD₃CN.

Figure S64. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Zn(1)_2](OTf)_2$ (5) (8.83 mmol·L⁻¹, 25 °C) in CD₃CN.

Figure S65. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Pd_2Zn(1)_2](OTf)_6$ (6) (8.90 mmol·L⁻¹, 25 °C) in CD₃CN.

Figure S66. Plot of ¹H DOSY NMR experiment for determination of the diffusion coefficient of $[Pd_2Zn_2(1)_4](OTf)_8$ (7) (9.23 mmol·L⁻¹, 25 °C) in CD₃CN.

Table S1. Diffusion coefficients *D* for complexes **2–7** obtained by ¹H DOSY NMR spectroscopy (CD₃CN, 25 °C, concentration as indicated) by fitting the individual peaks' integral decay *vs*. the gradient strength applied. For comparability between the

Compound	Concentration (mmol · L ⁻¹)	Compound diffusion coefficient D [Complex] (10	<i>D</i> [TMS] ^{J⁻¹⁰ m²· s⁻¹)}	D [CD₂HCN]
$[Pd_2(1)(CH_3CN)_2](OTf)_4(2)$	8.64	7.70	28.3	36.0
[Pd(1)] ₄ (OTf) ₈ (3)	10.32	4.51	26.9	34.4
[Pd(1) ₂](OTf) ₂ (4)	9.17	7.12	28.0	35.7
[Zn(1) ₂](OTf) ₂ (5)	8.83	7.18	28.1	35.6
[Pd ₂ Zn(1) ₂](OTf) ₆ (6)	8.90	6.21	27.7	35.1
[Pd ₂ Zn ₂ (1) ₂](OTf) ₈ (7)	9.23	4.79	26.8	33.6

individual measurements, diffusion coefficients *D* for CD₂HCN and tetramethylsilane (TMS) are also listed.

10. Mass Spectrometry

Figure S67. HR-ESI+ mass spectrum of $[Pd_2(1)(CH_3CN)_2](OTf)_2$ (2) in CH_3CN .

Figure S68. HR-ESI+ mass spectrum of $[Pd(1)]_4(OTf)_8$ (3) in CH₃CN.

Figure S69. HR-ESI+ mass spectrum of $[Pd(1)_2](OTf)_2$ (4) in CH₃CN.

Figure S70. HR-ESI+ mass spectrum of $[Zn(1)_2](OTf)_2$ (5) in CH₃CN.

700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 215 m/z

Figure S71. HR-ESI+ mass spectrum of $[Pd_2Zn(1)_2](OTf)_6$ (6) in CH₃CN.

Figure S72. HR-ESI+ mass spectrum of $[Pd_2Zn_2(1)_4](OTf)_8$ (7) in CH₃CN.

11. UV/Vis Spectroscopy

Compound	Solvent	Concentration (• 10 ⁻⁵ mol • L ⁻¹)	Wavelength λ (nm)	Absorbance (a.u.)	Molar extinction coefficient ε (L · cm ⁻¹ · mol ⁻¹)
Ligand (1)	CH_2CI_2	2.9	230	1.366	27100
			286	0.857	17000
			318	1.128	22400
			346	1.095	21700
[Pd ₂ (1)(CH ₃ CN) ₂](OTf) ₄ (2)	CH₃CN	2.6	253	0.843	32200
			293 ¹	0.526	20100
			397 ¹	0.802	30700
			416	1.006	38500
[Pd(1)] ₄ (OTf) ₈ (3)	CH₃CN	2.0	235	1.422	72400
			276	0.816	41600
			331	1.074	54700
			373	1.026	52300
[Pd(1) ₂](OTf) ₂ (4)	CH₃CN	2.3	230	0.970	42600
			285	0.536	23500
			331	0.743	32600
			358 ¹	0.607	26700
			390 ¹	0.313	13700
[Zn(1) ₂](OTf) ₂ (5)	CH₃CN	2.5	270	0.676	27000
			373	1.380	55100
[Pd ₂ Zn(1) ₂](OTf) ₆ (6)	CH₃CN	3.7	234	1.104	29600
			273 ¹	0.734	19700
			333 ¹	0.715	19100
			382	1.082	29000
[Pd ₂ Zn ₂ (1) ₄](OTf) ₈ (7)	CH₃CN	0.7	231	1.029	14100
			266	0.744	10200
			332 ¹	0.682	18200
			375	1.328	93500

 Table S2. UV/Vis data of compounds 1–8.

¹ Shoulder.

Figure S73. UV/Vis spectra of ligand (1) (in CH_2CI_2) and complexes 2–4 (in CH_3CN).

Figure S74. UV/Vis spectra of ligand (1) (in CH₂Cl₂) and complexes 5–7 (in CH₃CN).

12. Additional Information on X-Ray Diffraction Analyses

Table S3.	Summary	of cr	ystallogr	aphic data.
-----------	---------	-------	-----------	-------------

Compound	2 ·2CH₃CN	3 ·4CH₃CN	4.500.01	7 ⋅6CH ₃ CN	
		$\cdot CH_2 CI_2$ ^[1]	4-3CH ₂ Cl ₂	·6CH ₂ Cl ₂	
Empirical formula	$C_{43}H_{40}F_{12}N_{11}$	$C_{141}H_{124}CI_2F_{24}$	$C_{69}H_{66}CI_{10}F_{6}$	$C_{150}H_{142}CI_{12}F_{24}$	
	$O_{12}PPd_2S_4$	$N_{32}O_{24}P_4Pd_4S_8$	$N_{14}O_6P_2PdS_2$	$N_{34}O_{24}P_4Pd_2S_8Zn_2$	
Formula weight	1502.87	3983.57	1888.31	4410.27	
<i>Т/</i> К	130	130	130	180	
λ/Å	0.71073	0.71073	0.71073	1.54186	
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
Space group	C2/c	P21/c	<i>P</i> 2 ₁ /n	P21/c	
a/Å	23.1345(3)	26.4899(3)	13.9015(1)	18.2836(3)	
b/Å	19.3453(2)	21.7388(3)	38.1339(4)	25.6217(3)	
<i>c/</i> Å	50.1762(6)	32.7073(3)	14.9542(2)	39.2969(6)	
α/°	90	90	90	90	
в/°	94.366(1)	95.369(1)	98.185(1)	96.946(1)	
γ/°	90	90	90	90	
V∕/ų	22390.9(5)	18752.1(4)	7846.7(2)	18273.8(5)	
Ζ	16	4	4	4	
$ ho_{calcd.}/g\cdot cm^{-3}$	1.783	1.411	1.598	1.603	
μ/mm ⁻¹	0.929	0.619	0.746	5.513	
F(000)	12000	8032	3832	8928	
Crystal size/mm ³	0.050 x 0.150 x	0.250 x 0.400 x	0.300 x 0.300 x	0.050 x 0.200 x	
	0.150	0.400	0.400	0.250	
Colour and shape	Yellow plate	Yellow prism	Orange prism	Yellow plate	
θ _{max} /°	27.344	27.367	28.033	68.000	
GooF on F ²	1.055	1.025	1.092	1.023	
R _{int} /%	5.59	6.89	4.62	5.64	
$R_1/wR2(l>2\sigma)/\%$	5.99/13.36	5.58/13.81	6.11/13.69	9.26/24.68	
$R_1/wR2$ (all data)/%	7.93/14.28	8.82/15.38	7.87/14.58	12.18/27.92	
Largest diff.	1 662/-0 708	1 225/_1 505	1 212/ 0 075	1 660/ 1 172	
peak/hole/e∙Å ^{–3}	1.003/-0.708	1.323/-1.333	1.213/-0.073	1.000/-1.175	

^[1] The large unit cell of $3 \cdot 4CH_3CN \cdot CH_2Cl_2$ contained a high number of solvent molecules and a highly disordered triflate in the asymmetric unit, which could not be resolved sufficiently with a reasonable accuracy. A significant unidentified high number of dichloromethane (CH₂Cl₂) and acetonitrile molecules (CH₃CN) was removed by the SQUEEZE procedure. Consequently, the exact amount of lattice solvent molecules was not determinable.

Figure S75. Molecular structure of **3**·4CH₃CN·CH₂Cl₂ and intermetallic Pd···Pd distances in the rectangular macrocycle (triflate anions, solvent molecules and hydrogen atoms are omitted, carbon atoms are drawn as wireframes and **3** includes non-symmetry related A–D labels for clarity; thermal ellipsoids are set at the 50% probability level).

Figure S76. Molecular structure of **7**·6CH₃CN·6CH₂Cl₂and intermetallic Pd···Pd distances in the rectangular macrocycle (triflate anions, solvent molecules and hydrogen atoms are omitted, and carbon atoms are drawn as wireframes for clarity; thermal ellipsoids are set at the 50% probability level).