Supplementary Information

$\pi\text{-}Carbazolyl$ supported bis(alkyl) complexes of Sc, Y and La for $\alpha\text{-}olefin$ polymerization and hydrogenation

Alexander N. Selikhov^{a,b} Polina V. Pechenkina,^b Anton V. Cherkasov,^b Yulia V. Nelyubina,^a Tatyana A. Kovylina^b and Alexander A. Trifonov,^{*a,b}

a. A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia.

^{b.} G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603137, 49 Tropinina str., Nizhny Novgorod Russia GSP-445, Fax: + 007-831-462-74-97 E-mail: trif@iomc.ras.ru.

Table of Contents

1. Table of co	ontents .								.S2
2. Figure S1.	¹ H NM	R spectrun	n of [<i>t</i> Bu	4Carb]La(C	H ₂ C ₆ H	I5)2(THF) (1	-La)		S4
3. Figure La)	S2.	¹³ C{ ¹ H}	NMR	spectrum	of	[<i>t</i> Bu ₄ Carb]	La(CH ₂ C ₆ F	[5)2(THF)	(1- S5
4. Figure S3.	IR (KB	Br) spectrun	n of [<i>t</i> Bu	4Carb]La(C	H ₂ C ₆ H	H5)2(THF) (1	-La)		S6
5. Figure S4.	¹ H NM	R spectrum	n of [<i>t</i> Bu	4Carb]La(o-	NMe ₂	C ₆ H ₅ CH ₂) ₂	(2-La)		S7
6. Figure S5.	$^{13}C\{^{1}H$	} NMR spe	ectrum of	f [<i>t</i> Bu4Carb]	La(<i>o</i> -1	NMe ₂ C ₆ H ₅ C	CH ₂) ₂ (2-La))	S8
7. Figure S6.	IR (KB	Br) spectrun	n of [<i>t</i> Bu	4Carb]La(<i>o</i> -	-NMe ₂	$C_6H_5CH_2)_2$	(2-La)		S9
8. Figure S7.	¹ H NM	R spectrum	n of [<i>t</i> Bu	4Carb]Y(<i>o</i> -1	NMe ₂ C	$C_6H_5CH_2)_2$ (2)	2-Y)		S10
9. Figure S8.	$^{13}C\{^{1}H$	} NMR spe	ectrum of	f [<i>t</i> Bu ₄ Carb]	Y(<i>o</i> -N	Me ₂ C ₆ H ₅ C	$H_2)_2$ (2-Y).		S11
10. Figure S	9. IR (K	Br) spectru	m of [<i>t</i> B	u4Carb]Y(o	-NMe	₂ C ₆ H ₅ CH ₂) ₂	(2-Y)		.S12
11. Figure SI	10. ¹ H N	MR spectr	um of [<i>t</i>]	Bu4Carb]Sc(o-NM	e ₂ C ₆ H ₅ CH ₂) ₂ (2-Sc)		S13
12. Figure S1	11. ¹³ C{	¹ H} NMR s	spectrum	of [<i>t</i> Bu4Ca	rb]Sc(o-NMe ₂ C ₆ H	I5CH2)2 (2- S	Sc)	S14
13. Figure SI	1 2. IR (I	KBr) spectr	rum of [<i>t</i>]	Bu4Carb]Sc	(o-NM	le ₂ C ₆ H ₅ CH ₂	(2-Sc)		.S15
14. Figure S1	13. ¹ H N	MR spectr	um of [<i>t</i>]	Bu4Carb]Sc	(CH ₂ S	iMe ₃) ₂ (THF) (3-Sc)		S16
15. Figure SI	14. ¹³ C{	¹ H} NMR s	spectrum	of [<i>t</i> Bu4Ca	rb]Sc(CH ₂ SiMe ₃) ₂	e(THF) (3-S	c)	.S17
16. Figure S1	1 5. IR (I	KBr) spectr	rum of [<i>t</i>]	Bu4Carb]Sc	(CH ₂ S	iMe ₃) ₂ (THF	F) (3-Sc)		S18
17. Figure SI	16. ¹ H N	MR spectr	um of [<i>t</i>]	Bu4Carb]Y(CH ₂ Si	Me ₃) ₂ (THF)	(3- Y)		S19
18. Figure S1	17. ¹³ C{	¹ H} NMR s	spectrum	of [<i>t</i> Bu4Ca	rb]Y(C	CH ₂ SiMe ₃) ₂ ((THF) (3-Y)	S20
19. Figure Si	1 8. IR (1	KBr) spectr	rum of [<i>t</i>]	Bu4Carb]Y(CH ₂ Si	Me ₃) ₂ (THF)) (3-Y)		.S21
20. Figure S1	19. ¹ H N	MR spectr	um of 4,	4-diphenyl-	but-1-	ene (300 MI	Hz, CDCl ₃ ,	300K)	S22
21. Figure S K)	520. ¹³ 0	C{ ¹ H} NM	R spect	rum of 4,4	-diphe	nyl-but-1-er	ne (75 MH	z, CDCl ₃ ,	300 S23
22. Figure S2	21. ¹ H N	MR spectr	um of po	oly(1-hexene	e) (300	MHz, CDC	Cl ₃ , 300 K).		S24
23. Figure S2	22. $^{13}C\{$	¹ H} NMR	spectrum	of poly(1-h	nexene) (75 MHz,	CDCl ₃ , 300	K)	.S25
24. Figure S2	23. ¹ H N	MR spectr	um of po	ly(1-hepten	e) (30	0 MHz, CD	Cl ₃ , 300 K).		.S26
25. Figure S2	24. ¹³ C{	¹ H} NMR	spectrum	of poly(1-h	neptene	e) (75 MHz,	CDCl ₃ , 30	0 K)	S27
26. Figure S2	25. ¹ H N	MR spectr	um of po	ly(1-octene) (300	MHz, CDC	l ₃ , 300 K)		S28
27. Figure S2	26. ¹³ C{	¹ H} NMR	spectrum	of poly(1-c	octene)	(75 MHz, 0	CDC1 ₃ , 300	K)	S29
28. Figure S2	27. ¹ H N	MR spectr	um of po	ly(1-nonene	e) (300) MHz, CDO	Cl ₃ , 300 K).	•••••	.\$30
29. Figure S2	28. ¹³ C{	¹ H} NMR	spectrum	of poly(1-r	nonene	e) (75 MHz,	CDCl ₃ , 300	K)	S31

30. Figure S29. ¹ H NMR spectrum of poly(1-decene) (300 MHz, CDCl ₃ , 300 K)S32
31. Figure S30. ¹³ C{ ¹ H} NMR spectrum of poly(1-decene) (75 MHz, CDCl ₃ , 300 K)S33
32. Figure S31. ¹ H NMR spectrum of poly(4,4-diphenyl-but-1-ene) (300 MHz, CDCl ₃ , 300 K)
33. Figure S32. ¹³ C{ ¹ H} NMR spectrum of poly(4,4-diphenyl-but-1-ene) (75 MHz, CDCl ₃ , 300 K)
34. Figure S33. ¹ H NMR spectrum of 1,1-diphenylbutane (300 MHz, CDCl ₃ , 300 K)S36
35. Figure S34. ¹³ C{ ¹ H} NMR spectrum of 1,1-diphenylbutane (75 MHz, CDCl ₃ , 300 K)S37
36. Figure S35. GPC of poly(1-hexene) (Table 2, Entry 5)
37. Figure S36. GPC of poly(1-hexene) (Table 2, Entry 6)
38. Figure S37. GPC of poly(1-hexene) (Table 2, Entry 7)
39. Figure S38. GPC of poly(1-hexene) (Table 2, Entry 8)
40. Figure S39. GPC of poly(1-hexene) (Table 2, Entry 9)
41. Figure S40. GPC of poly(1-hexene) (Table 2, Entry 10)
42. Figure S41. GPC of poly(1-hexene) (Table 2, Entry 11)
43. Figure S42. GPC of poly(1-heptene) (Table 2, Entry 12)
44. Figure S43. GPC of poly(1-octene) (Table 2, Entry 13)
45. Figure S44. GPC of poly(1-nonene) (Table 2, Entry 14)
46. Figure S45. GPC of poly(1-decene) (Table 2, Entry 15)
47. Figure S46. GPC of poly(1-decene) (Table 2, Entry 16)S49
48. Figure S47. GPC of poly(1-decene) (Table 2, Entry 17)
49. Figure S48. GPC of poly(1-decene) (Table 2, Entry 18)
50. Figure S49. GPC of poly(4,4-diphenyl-but-1-ene) (Table 2, Entry 19)
51. Figure S50. ¹ H NMR spectrum of the reaction of 3-Sc with $B(C_6F_5)_3$
52. Figure S51. ¹ H NMR spectrum of the reaction of 3-Sc with [PhNHMe ₂][B(C ₆ F ₅) ₄]S54
53. Figure S52. ¹ H NMR spectrum of the reaction of 3-Sc with $[Ph_3C][B(C_6F_5)_4]$ S55
54. Figure S53. ¹ H NMR spectrum of the tBu ₄ CarbH (400 MHz, C ₆ D ₆ , 298K)S56
54. Table S1. Crystal Data and Structure Refinement Details for Complexes 1-La, 2-Y, 2-Sc, 3- Sc

Figure S1. ¹H NMR spectrum of [*t*Bu₄Carb]La(CH₂C₆H₅)₂(THF) (**1-La**) (400 MHz, C₆D₆, 293 K).

Figure S2. ¹³C{¹H} NMR spectrum of [*t*Bu₄Carb]La(CH₂C₆H₅)₂(THF) (**1-La**) (100 MHz, C₆D₆, 293 K).

Figure S3. IR spectrum of complex [*t*Bu₄Carb]La(CH₂C₆H₅)₂(THF) (1-La) (KBr, Nujol mull).

Figure S4. ¹H NMR spectrum of [*t*Bu₄Carb]La(*o*-NMe₂C₆H₅CH₂)₂ (**2-La**) (300 MHz, C₆D₆, 293 K).

Figure S5. ¹³C{¹H} NMR spectrum of [tBu_4Carb]La(o-NMe₂C₆H₅CH₂)₂ (**2-La**) (75 MHz, C₆D₆, 293 K).

Figure S6. IR spectrum of complex [*t*Bu₄Carb]La(*o*-NMe₂C₆H₅CH₂)₂ (**2-La**) (KBr, Nujol mull).

Figure S7. ¹H NMR spectrum of [*t*Bu₄Carb]Y(*o*-NMe₂C₆H₅CH₂)₂ (**2-Y**) (400 MHz, C₆D₆, 293 K).

S11

Figure S9. IR spectrum of complex [*t*Bu₄Carb]Y(*o*-NMe₂C₆H₅CH₂)₂ (2-Y) (KBr, Nujol mull).

Figure S10. ¹H NMR spectrum of [*t*Bu₄Carb]Sc(*o*-NMe₂C₆H₅CH₂)₂ (**2-Sc**) (400 MHz, C₆D₆, 293 K).

Figure S11. ¹³C{¹H} NMR spectrum of [tBu_4Carb]Sc(o-NMe₂C₆H₅CH₂)₂ (**2-Sc**) (100 MHz, C₆D₆, 293 K).

Figure S12. IR spectrum of complex [*t*Bu₄Carb]Sc(*o*-NMe₂C₆H₅CH₂)₂ (**2-Sc**) (KBr, Nujol mull).

Figure S13. ¹H NMR spectrum of [*t*Bu₄Carb]Sc(CH₂SiMe₃)₂(THF) (**3-Sc**) (400 MHz, C₆D₆, 293 K).

S17

Figure S15. IR spectrum of complex [*t*Bu₄Carb]Sc(CH₂SiMe₃)₂(THF) (**3-Sc**) (KBr, Nujol mull).

Figure S16. ¹H NMR spectrum of [*t*Bu₄Carb]Y(CH₂SiMe₃)₂(THF) (**3-Y**) (400 MHz, C₆D₆, 293 K).

S20

Figure S18. IR spectrum of complex [*t*Bu₄Carb]Y(CH₂SiMe₃)₂(THF) (**3-Y**) (KBr, Nujol mull).

Figure S19. ¹H NMR spectrum of 4,4-diphenyl-but-1-ene (300 MHz, CDCl₃, 300 K).

Figure S20. ¹³C{¹H} NMR spectrum of 4,4-diphenyl-but-1-ene (75 MHz, CDCl₃, 300 K).

Figure S21. ¹H NMR spectrum of poly(1-hexene) (300 MHz, CDCl₃, 300 K).

Figure S22. ¹³C $\{^{1}H\}$ NMR spectrum of poly(1-hexene) (75 MHz, CDCl₃, 300 K).

Figure S23. ¹H NMR spectrum of poly(1-heptene) (300 MHz, CDCl₃, 300 K).

Figure S24. ¹³C{¹H} NMR spectrum of poly(1-heptene) (75 MHz, CDCl₃, 300 K).

Figure S25. ¹H NMR spectrum of poly(1-octene) (300 MHz, CDCl₃, 300 K).

Figure S26. ¹³C $\{^{1}H\}$ NMR spectrum of poly(1-octene) (75 MHz, CDCl₃, 300 K).

Figure S27. ¹H NMR spectrum of poly(1-nonene) (300 MHz, CDCl₃, 300 K).

Figure S28. ${}^{13}C{}^{1}H$ NMR spectrum of poly(1-nonene) (75 MHz, CDCl₃, 300 K).

Figure S29. ¹H NMR spectrum of poly(1-decene) (300 MHz, CDCl₃, 300 K).

Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum of poly(1-decene) (75 MHz, CDCl₃, 300 K).

Figure S31. ¹H NMR spectrum of poly(4,4-diphenyl-but-1-ene) (300 MHz, CDCl₃, 300 K).

Figure S33. ¹H NMR spectrum of 1,1-diphenylbutane (300 MHz, CDCl₃, 300 K).

Figure S34. ¹³C{¹H} NMR spectrum of 1,1-diphenylbutane (75 MHz, CDCl₃, 300 K).

Figure S35. GPC of poly(1-hexene) (Table 2, Entry 5).

Figure S36. GPC of poly(1-hexene) (Table 2, Entry 6).

Figure S37. GPC of poly(1-hexene) (Table 2, Entry 7).

Figure S38. GPC of poly(1-hexene) (Table 2, Entry 8).

Figure S39. GPC of poly(1-hexene) (Table 2, Entry 9).

Figure S40. GPC of poly(1-hexene) (Table 2, Entry 10).

Figure S41. GPC of poly(1-hexene) (Table 2, Entry 11).

Figure S42. GPC of poly(1-heptene) (Table 2, Entry 12).

Figure S43. GPC of poly(1-octene) (Table 2, Entry 13).

Figure S44. GPC of poly(1-nonene) (Table 2, Entry 14).

Figure S45. GPC of poly(1-decene) (Table 2, Entry 15).

Figure S46. GPC of poly(1-decene) (Table 2, Entry 16).

Figure S47. GPC of poly(1-decene) (Table 2, Entry 17).

Figure S48. GPC of poly(1-decene) (Table 2, Entry 18).

Figure S49. GPC of poly(4,4-diphenyl-but-1-ene) (Table 2, Entry 19).

Figure S50. ¹H NMR spectrum of the reaction of **3-Sc** with $B(C_6F_5)_3$ (300 MHz, C_6D_6 , 300 K).

3426_tBu4CarbSc(+)

Figure S51. ¹H NMR spectrum of the reaction of 3-Sc with [PhNHMe₂][B(C_6F_5)₄] (300 MHz, C_6D_6 , 300 K).

Figure S52. ¹H NMR spectrum of the reaction of **3-Sc** with [Ph₃C][B(C₆F₅)₄] (300 MHz, C₆D₆, 300 K).

Figure S53. ¹H NMR spectrum of the tBu₄CarbH (400 MHz, C₆D₆, 298 K).

	1-La	2-Y	2-Sc	3-Sc
Empirical formula	C ₄₆ H ₆₂ LaNO	C ₄₆ H ₆₄ N ₃ Y, C ₇ H ₈	$C_{46}H_{64}N_3Sc$, $\frac{1}{2}C_6H_{14}$	C ₄₀ H ₇₀ NOScSi ₂ , C ₅ H ₁₂
Formula weight	783.87	840.04	747.04	754.25
Т, К	100	120	120	100
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1	$P2_1/c$	<i>C2/c</i>	$P2_1/c$
<i>a</i> , Å	10.4113(3)	21.112(13)	41.78(2)	10.9924(5)
b, Å	10.6661(3)	12.629(8)	12.672(6)	15.8617(7)
<i>c</i> , Å	19.7627(6)	18.607(11)	18.072(8)	27.3052(12)
a, deg	88.4910(10)	90	90	90
β , deg	82.5190(10)	107.171(10)	112.604(12)	93.099(2)
γ, deg	68.7340(10)	90	90	90
$V, Å^3$	2027.24(10)	4740(5)	8833(7)	4753.9(4)
Ζ	2	4	8	4
$d_{\rm calc}, {\rm g/cm^3}$	1.284	1.177	1.124	1.054

Table S1. Crystal Data and Structure Refinement Details for Complexes 1-La, 2-Y, 2-Sc, 3-Sc

μ , mm ⁻¹	1.087	1.267	0.202	0.236
F_{000}	820	1800	3256	1664
Crystal size, mm	0.25×0.11×0.04	0.10×0.10×0.01	0.35×0.15×0.03	0.17×0.09×0.05
θ range for data collection, deg	2.05-27.89	1.90-26.02	1.69-25.03	2.26-25.12
	-13≤h≤13,	-26≤h≤26,	-49≤h≤49,	-13≤h≤13,
HKL indices	-14≤k≤14,	-15≤k≤15,	-15≤k≤15,	-18≤k≤18,
	-25≤l≤25	-22≤l≤22	-21 <u>≤</u> 1 <u>≤</u> 21	-32 <u>≤</u> 1 <u>≤</u> 32
Reflns collected	20152	60951	59336	53000
Independent reflns $(I > 2\sigma(I))$	8292	4041	3097	5769
R _{int}	0.0246	0.4026	0.5174	0.1048
Compl. to θ , %	99.1	99.9	99.9	99.6
Data / restraints / params	9575 / 0 / 470	9335 / 699 / 572	7787 / 585 / 524	8443 / 182 / 550
$S(F^2)$	1.060	0.991	1.002	1.042
Final <i>R</i> indices	$R_1 = 0.0312,$	$R_1 = 0.0806,$	$R_1 = 0.1175,$	$R_1 = 0.0579,$
$(F^2 > 2\sigma(F^2))$	$wR_2 = 0.0703$	$wR_2 = 0.1258$	$wR_2 = 0.2627$	$wR_2 = 0.1146$
<i>R</i> indices (all data)	$R_1 = 0.0406,$	$R_1 = 0.2129,$	$R_1 = 0.2802,$	$R_1 = 0.1027,$

	$wR_2 = 0.0733$	$wR_2 = 0.1616$	$wR_2 = 0.3567$	$wR_2 = 0.1318$
Largest diff peak and hole, e/Å ³	1.13 / -1.01	0.55 / -0.56	1.07 / -0.74	0.41 / -0.40