Supporting Information

Red room temperature phosphorescence of lead halide based coordination polymer showing efficient angle-dependent polarized emission and photoelectric performance

Xu-Ke Tian,a,b Ji-Rui Zhang,b Meng-Yao Wen,b Zi-Han Liu,b Jia-hui Guo,b Cheng-Yu Ma,b Hao-Yi Zhang,b Xiao-Gang Yang,*b and Lu-Fang Maa,b

a College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
b College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.

*Corresponding author: yxg2233@126.com.
Figure S1. Simulated and experimental PXRD patterns of complex 1.
Figure S2. Thermo gravimetric analysis (TGA) curve of complex 1.
Figure S3. FT-IR spectrum of complex 1.
Figure S4. Detailed (a) and overall (b) view of dense π···π stacking between phen ligands with H-aggregated arrangement in complex 1.
Figure S5. UV-vis absorption spectrum of complex 1 in solid state.
Figure S6. Photograph of the solid sample of 1 under and UV (365 nm) light.
Figure S7. Normalized fluorescence (black) and phosphorescence (red) spectra of 1 in solid state measured at room temperature.
Figure S8. The calculated energy levels and energy gaps for selected molecular orbitals of 1.
Figure S9. (a) 3D view of angle-dependent fluorescence emission of the CP based film. (c) Fluorescence intensity of the film as a function of the polarized angle. (d) fluorescence spectra of the film measured at a polarized angle of 0 and 90°.
Figure S10. Simulated and experimental PXRD patterns of complex 1 after long-term photoelectronic measurements.