" Structural, magnetic and photoluminescent properties of new hybrid hypophosphites: discovery of the first noncentrosymmetric and two cobalt-based members "

by Mirosław Mączka,\*<sup>a</sup> Anna Gągor,<sup>a</sup> Dagmara Stefańska,<sup>a</sup> Jan K. Zaręba<sup>b</sup> and Adam Pikul<sup>a</sup>

<sup>a</sup>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland

<sup>b</sup>Institute of Advanced Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: m.maczka@intibs.pl

## Table S1. Experimental details.

Experiments were carried out with Mo *K*α radiation using an Xcalibur, Atlas. H atoms were treated by a mixture of independent and constrained refinement. Absorption was corrected using Multi-scan *CrysAlis PRO* 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Computer programs: CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018), SHELXT 2014/5 (Sheldrick, 2014), SHELXT 2018/2 (Sheldrick, 2018), SHELXL 2018/3 (Sheldrick, 2015), Olex2 1.5 (Dolomanov et al., 2009).

|                                                                                        | [GUA]Cd(H <sub>2</sub> POO) <sub>3</sub>  | [GUA]Co(H2POO)3                                                                | [IM]Cd(H <sub>2</sub> POO) <sub>3</sub>    | [IM]Co(H <sub>2</sub> POO) <sub>3</sub>     |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|--|--|
| Crystal data                                                                           |                                           |                                                                                |                                            |                                             |  |  |
| Chemical formula                                                                       | $CdH_6O_6P_3$ · $CH_6N_3$                 | CoH <sub>6</sub> O <sub>6</sub> P <sub>3</sub> ·CH <sub>6</sub> N <sub>3</sub> | $CdH_6O_6P_3{\cdot}C_3H_5N_2$              | $CoH_6O_6P_3$ · $C_3H_5N_2$                 |  |  |
| M <sub>r</sub>                                                                         | 367.45                                    | 313.98                                                                         | 376.45                                     | 322.98                                      |  |  |
| Crystal system, space group                                                            | Trigonal, <i>R</i> -3 <i>c</i>            | Monoclinic, <i>I</i> 2/ <i>m</i>                                               | Monoclinic, $P2_1/c$                       | Orthorhombic,<br><i>Pbca</i>                |  |  |
| Temperature (K)                                                                        | 293                                       | 293                                                                            | 298                                        | 295                                         |  |  |
| a, b, c (Å)                                                                            | 9.2500 (2),<br>9.2500 (2),<br>23.0532 (6) | 8.6597 (4),<br>13.0778 (6),<br>9.4000 (5)                                      | 9.8832 (3),<br>12.8778 (3),<br>18.6407 (7) | 13.2731 (3),<br>12.4955 (3),<br>13.2763 (3) |  |  |
| α, β, γ (°)                                                                            | 90, 90, 120                               | 90, 90.623 (5), 90                                                             | 90, 92.082 (3), 90                         | 90, 90, 90                                  |  |  |
| $V(Å^3)$                                                                               | 1708.23 (9)                               | 1064.49 (9)                                                                    | 2370.91 (13)                               | 2201.93 (9)                                 |  |  |
| Ζ                                                                                      | 6                                         | 4                                                                              | 8                                          | 8                                           |  |  |
| μ (mm <sup>-1</sup> )                                                                  | 2.35                                      | 2.07                                                                           | 2.26                                       | 2.00                                        |  |  |
| Crystal size (mm)                                                                      | $0.21 \times 0.15 \times 0.10$            | $0.26 \times 0.21 \times 0.12$                                                 | 0.21 	imes 0.15 	imes 0.08                 | $0.11 \times 0.07 \times 0.05$              |  |  |
| Data collection                                                                        |                                           |                                                                                |                                            |                                             |  |  |
| No. of measured, independent, and observed $[I > 2\sigma(I)]$ reflections              | 11397, 523, 494                           | 5023, 1379, 1246                                                               | 18612, 4207, 3609                          | 33671, 2259, 1900                           |  |  |
| R <sub>int</sub>                                                                       | 0.031                                     | 0.021                                                                          | 0.029                                      | 0.045                                       |  |  |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                      | 0.693                                     | 0.689                                                                          | 0.610                                      | 0.625                                       |  |  |
| Refinement                                                                             |                                           |                                                                                |                                            |                                             |  |  |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                                    | 0.018, 0.045, 1.08                        | 0.023, 0.062, 1.10                                                             | 0.024, 0.055, 1.05                         | 0.026, 0.058, 1.07                          |  |  |
| No. of reflections                                                                     | 523                                       | 1379                                                                           | 4207                                       | 2259                                        |  |  |
| No. of parameters                                                                      | 29                                        | 86                                                                             | 308                                        | 168                                         |  |  |
| No. of restraints                                                                      | 0                                         | 0                                                                              | 0                                          | 0                                           |  |  |
| $\Delta \rangle_{\rm max}, \overline{\Delta} \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$ | 0.53, -0.74                               | 0.33, -0.51                                                                    | 0.74, -0.47                                | 0.30, -0.35                                 |  |  |

|                                                                           | [PYR]Cd(H <sub>2</sub> POO) <sub>3</sub> |
|---------------------------------------------------------------------------|------------------------------------------|
| Crystal data                                                              |                                          |
| Chemical formula                                                          | $CdH_6O_6P_3 \cdot C_4H_{10}N$           |
| M <sub>r</sub>                                                            | 379.49                                   |
| Crystal system, space group                                               | Orthorhombic, Aea2                       |
| Temperature (K)                                                           | 295                                      |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                        | 12.8565 (1), 13.9166 (2), 13.6699 (2)    |
| $\alpha, \beta, \gamma$ (°)                                               | 90, 90, 90                               |
| $V(Å^3)$                                                                  | 2445.80 (5)                              |
| Ζ                                                                         | 8                                        |
| μ (mm <sup>-1</sup> )                                                     | 2.19                                     |
| Crystal size (mm)                                                         | $0.19 \times 0.18 \times 0.15$           |
| Data collection                                                           |                                          |
| No. of measured, independent, and observed $[I > 2\sigma(I)]$ reflections | 51641, 3297, 3227                        |
| R <sub>int</sub>                                                          | 0.019                                    |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                         | 0.694                                    |
| Refinement                                                                |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                       | 0.016, 0.042, 1.14                       |
| No. of reflections                                                        | 3297                                     |
| No. of parameters                                                         | 150                                      |
| No. of restraints                                                         | 1                                        |
| $\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$   | 0.61, -0.64                              |
| Absolute structure                                                        | Refined as an inversion twin.            |
| Absolute structure parameter                                              | 0.38 (2)                                 |

| [GUA]Cd(H <sub>2</sub> POO              | )3          |                     |             |
|-----------------------------------------|-------------|---------------------|-------------|
| Cd1—O1 <sup>i</sup>                     | 2.3001 (12) | Cd1—O1 <sup>v</sup> | 2.3002 (12) |
| Cd1—O1                                  | 2.3001 (12) | P1—O1               | 1.5068 (13) |
| Cd1—O1 <sup>ii</sup>                    | 2.3001 (12) | P1—O1 <sup>vi</sup> | 1.5069 (13) |
| Cd1—O1 <sup>iii</sup>                   | 2.3002 (12) | N1C1                | 1.319 (2)   |
| Cd1—O1 <sup>iv</sup>                    | 2.3002 (13) |                     |             |
|                                         |             |                     |             |
| [GUA]Co(H <sub>2</sub> POO              | )3          |                     |             |
| Co1-01                                  | 2.0663 (12) | P2—O2               | 1.5013 (12) |
| Co1—O1 <sup>vii</sup>                   | 2.0663 (12) | P1—O1               | 1.5060 (13) |
| Co1—O2 <sup>vii</sup>                   | 2.1926 (12) | P1—O1 <sup>ix</sup> | 1.5061 (13) |
| Co1—O2                                  | 2.1926 (12) | Р3—О3               | 1.4929 (13) |
| Co1—O3                                  | 2.0965 (13) | P3—O3 <sup>x</sup>  | 1.4929 (13) |
| Co1—O3 <sup>vii</sup>                   | 2.0965 (13) | N1—C1               | 1.328 (3)   |
| P2—O2 <sup>viii</sup>                   | 1.5013 (12) | N2—C1               | 1.324 (2)   |
|                                         |             |                     |             |
| $[IM]Cd(H_2POO)_3$                      |             |                     |             |
| Cd1—O2                                  | 2.303 (2)   | P3—O6               | 1.481 (3)   |
| Cd1—O4                                  | 2.254 (2)   | P4—O7               | 1.480 (2)   |
| Cd1—O8                                  | 2.249 (2)   | P4—O8               | 1.488 (2)   |
| Cd1—O10                                 | 2.286 (2)   | P5—O9               | 1.486 (3)   |
| Cd1—012                                 | 2.257 (3)   | P5—O10              | 1.486 (2)   |
| Cd1—O6                                  | 2.277 (2)   | P6—O11              | 1.486 (3)   |
| Cd2—O1 <sup>xi</sup>                    | 2.299 (2)   | P6—O12              | 1.452 (3)   |
| Cd2—O3 <sup>xii</sup>                   | 2.267 (2)   | N8—C9               | 1.359 (4)   |
| Cd2—O5 <sup>xiii</sup>                  | 2.307 (2)   | N8—C7               | 1.305 (4)   |
| Cd2—O9 <sup>xiv</sup>                   | 2.281 (2)   | N6—C7               | 1.304 (4)   |
| Cd2—O7                                  | 2.257 (2)   | N6—C10              | 1.358 (4)   |
| Cd2—O11 <sup>xv</sup>                   | 2.283 (2)   | N3—C2               | 1.310 (4)   |
| P1                                      | 1.496 (2)   | N3—C4               | 1.361 (4)   |
| P1—O1                                   | 1.496 (2)   | N1—C2               | 1.309 (4)   |
| P2—O3                                   | 1.495 (2)   | N1—C5               | 1.362 (5)   |
| P2—O4                                   | 1.482 (2)   | C9—C10              | 1.339 (5)   |
| P3—O5                                   | 1.494 (2)   | C4—C5               | 1.335 (5)   |
|                                         |             |                     |             |
| [IM]Co(H <sub>2</sub> POO) <sub>3</sub> |             |                     |             |

| Table S2. | Selected | geometric | parameters | (Å, | °). |
|-----------|----------|-----------|------------|-----|-----|

| Co1—O2                                   | 2.1041 (15) | P2—O3                                    | 1.4880 (16) |
|------------------------------------------|-------------|------------------------------------------|-------------|
| Co1—O4                                   | 2.1129 (15) | P3—O6                                    | 1.4950 (17) |
| Co1—O3 <sup>xvi</sup>                    | 2.1270 (15) | P3—O5                                    | 1.4860 (17) |
| Co1—O6                                   | 2.0852 (16) | N1—C1                                    | 1.364 (3)   |
| Co1—O5 <sup>xvii</sup>                   | 2.0983 (16) | N1—C2                                    | 1.310 (3)   |
| Co1—O1 <sup>xviii</sup>                  | 2.0809 (17) | N2—C2                                    | 1.314 (3)   |
| P1—O2                                    | 1.4947 (16) | N2—C3                                    | 1.361 (3)   |
| P1—O1                                    | 1.4856 (18) | C1—C3                                    | 1.334 (4)   |
| P2—O4                                    | 1.4918 (16) |                                          |             |
|                                          |             |                                          |             |
| [PYR]Cd(H <sub>2</sub> POO) <sub>3</sub> |             |                                          |             |
| Cd1—O6 <sup>xix</sup>                    | 2.3198 (17) | Р3—О3                                    | 1.496 (3)   |
| Cd1—O1                                   | 2.256 (2)   | Р3—О5                                    | 1.476 (4)   |
| Cd1—O2                                   | 2.260 (2)   | P1—O6                                    | 1.493 (2)   |
| Cd1—O3                                   | 2.338 (2)   | P1—O1                                    | 1.473 (5)   |
| Cd1—O4                                   | 2.269 (2)   | C1—N1                                    | 1.489 (4)   |
| Cd1—O5 <sup>xx</sup>                     | 2.287 (3)   | C1—C2                                    | 1.480 (5)   |
| P4—O4 <sup>xxi</sup>                     | 1.492 (2)   | N1-C4                                    | 1.478 (4)   |
| P4—O4                                    | 1.492 (2)   | C4—C3                                    | 1.501 (5)   |
| P2—O2 <sup>xxii</sup>                    | 1.489 (2)   | C2—C3                                    | 1.521 (6)   |
| P2—O2                                    | 1.489 (2)   |                                          |             |
|                                          |             |                                          |             |
| [GUA]Cd(H <sub>2</sub> POO) <sub>3</sub> |             |                                          |             |
| O1 <sup>i</sup> —Cd1—O1 <sup>iii</sup>   | 88.67 (5)   | O1 <sup>v</sup> —Cd1—O1 <sup>ii</sup>    | 88.66 (5)   |
| O1 <sup>iv</sup> —Cd1—O1 <sup>ii</sup>   | 180.0       | O1 <sup>iii</sup> —Cd1—O1 <sup>v</sup>   | 91.33 (5)   |
| O1 <sup>iv</sup> —Cd1—O1                 | 88.67 (5)   | O1 <sup>iii</sup> —Cd1—O1                | 180.00 (6)  |
| O1 <sup>i</sup> —Cd1—O1 <sup>iv</sup>    | 88.66 (5)   | $O1^{iv}$ —Cd1—O1 <sup>v</sup>           | 91.34 (5)   |
| O1 <sup>i</sup> —Cd1—O1                  | 91.34 (5)   | O1 <sup>ii</sup> —Cd1—O1                 | 91.34 (5)   |
| O1 <sup>iii</sup> —Cd1—O1 <sup>iv</sup>  | 91.33 (5)   | O1 <sup>i</sup> —Cd1—O1 <sup>ii</sup>    | 91.34 (5)   |
| O1 <sup>iii</sup> —Cd1—O1 <sup>ii</sup>  | 88.66 (5)   | O1 <sup>v</sup> —Cd1—O1                  | 88.67 (5)   |
| O1 <sup>i</sup> —Cd1—O1 <sup>v</sup>     | 180.0       |                                          |             |
|                                          |             |                                          |             |
| [GUA]Co(H <sub>2</sub> POO) <sub>3</sub> |             |                                          |             |
| 01—Co1—O1 <sup>vii</sup>                 | 180.00 (5)  | O1 <sup>vii</sup> —Co1—O3 <sup>vii</sup> | 88.34 (5)   |
| O1—Co1—O2                                | 89.40 (5)   | O2 <sup>vii</sup> —Co1—O2                | 180.0       |
| O1 <sup>vii</sup> —Co1—O2                | 90.60 (5)   | O3 <sup>vii</sup> —Co1—O2                | 88.88 (5)   |
| O1—Co1—O2 <sup>vii</sup>                 | 90.60 (5)   | O3—Co1—O2 <sup>vii</sup>                 | 88.89 (5)   |
| O1 <sup>vii</sup> —Co1—O2 <sup>vii</sup> | 89.40 (5)   | O3 <sup>vii</sup> —Co1—O2 <sup>vii</sup> | 91.12 (5)   |
|                                          |             |                                          |             |

| O1—Co1—O3                                | 88.34 (5)   | O3—Co1—O2                                   | 91.12 (5)  |
|------------------------------------------|-------------|---------------------------------------------|------------|
| 01—Co1—O3 <sup>vii</sup>                 | 91.66 (5)   | O3—Co1—O3 <sup>vii</sup>                    | 180.00 (8) |
| 01 <sup>vii</sup> —Co1—O3                | 91.66 (5)   |                                             |            |
|                                          |             |                                             |            |
| [IM]Cd(H <sub>2</sub> POO) <sub>3</sub>  |             |                                             |            |
| O4—Cd1—O2                                | 87.75 (8)   | O1 <sup>xi</sup> —Cd2—O5 <sup>xiii</sup>    | 177.98 (8) |
| O4—Cd1—O8                                | 174.75 (8)  | O3 <sup>xii</sup> —Cd2—O1 <sup>xi</sup>     | 88.33 (8)  |
| O4—Cd1—O10                               | 85.64 (8)   | O3 <sup>xii</sup> —Cd2—O5 <sup>xiii</sup>   | 90.21 (9)  |
| O4—Cd1—O12                               | 88.28 (9)   | O3 <sup>xii</sup> —Cd2—O9 <sup>xiv</sup>    | 87.98 (8)  |
| O4—Cd1—O6                                | 90.38 (10)  | O3 <sup>xii</sup> —Cd2—O11 <sup>xv</sup>    | 92.11 (8)  |
| O8—Cd1—O2                                | 88.01 (9)   | O9 <sup>xiv</sup> —Cd2—O1 <sup>xi</sup>     | 91.80 (9)  |
| O8—Cd1—O10                               | 91.46 (9)   | O9 <sup>xiv</sup> —Cd2—O5 <sup>xiii</sup>   | 89.54 (8)  |
| O8—Cd1—O12                               | 95.23 (9)   | O9 <sup>xiv</sup> —Cd2—O11 <sup>xv</sup>    | 171.74 (9) |
| O8—Cd1—O6                                | 93.57 (10)  | O7—Cd2—O1 <sup>xi</sup>                     | 89.92 (7)  |
| O10—Cd1—O2                               | 92.48 (8)   | O7—Cd2—O3 <sup>xii</sup>                    | 177.85 (8) |
| O12—Cd1—O2                               | 95.94 (10)  | O7—Cd2—O5 <sup>xiii</sup>                   | 91.58 (8)  |
| O12—Cd1—O10                              | 169.41 (10) | O7—Cd2—O9 <sup>xiv</sup>                    | 90.84 (9)  |
| O12—Cd1—O6                               | 89.14 (11)  | O7—Cd2—O11 <sup>xv</sup>                    | 89.32 (8)  |
| O6—Cd1—O2                                | 174.52 (9)  | O11 <sup>xv</sup> —Cd2—O1 <sup>xi</sup>     | 96.46 (9)  |
| O6—Cd1—O10                               | 82.24 (9)   | O11 <sup>xv</sup> —Cd2—O5 <sup>xiii</sup>   | 82.20 (8)  |
|                                          |             |                                             |            |
| [IM]Co(H <sub>2</sub> POO) <sub>3</sub>  |             |                                             |            |
| O2—Co1—O4                                | 89.49 (6)   | O5 <sup>xvii</sup> —Co1—O4                  | 85.51 (6)  |
| O2—Co1—O3 <sup>xvi</sup>                 | 85.45 (6)   | O5 <sup>xvii</sup> —Co1—O3 <sup>xvi</sup>   | 89.13 (7)  |
| O4—Co1—O3 <sup>xvi</sup>                 | 172.74 (6)  | O1 <sup>xviii</sup> —Co1—O2                 | 177.46 (8) |
| O6—Co1—O2                                | 88.98 (6)   | O1 <sup>xviii</sup> —Co1—O4                 | 91.25 (7)  |
| O6—Co1—O4                                | 89.07 (7)   | O1 <sup>xviii</sup> —Co1—O3 <sup>xvi</sup>  | 94.02 (7)  |
| O6—Co1—O3 <sup>xvi</sup>                 | 96.03 (7)   | O1 <sup>xviii</sup> —Co1—O6                 | 88.61 (7)  |
| O6—Co1—O5 <sup>xvii</sup>                | 173.95 (6)  | O1 <sup>xviii</sup> —Co1—O5 <sup>xvii</sup> | 94.19 (8)  |
| O5 <sup>xvii</sup> —Co1—O2               | 88.29 (7)   |                                             |            |
|                                          |             |                                             |            |
| [PYR]Cd(H <sub>2</sub> POO) <sub>3</sub> |             |                                             |            |
| O6 <sup>xix</sup> —Cd1—O3                | 84.61 (10)  | O2—Cd1—O4                                   | 173.48 (9) |
| O1—Cd1—O6 <sup>xix</sup>                 | 173.19 (17) | O2—Cd1—O5 <sup>xx</sup>                     | 88.52 (9)  |
| O1—Cd1—O2                                | 93.34 (11)  | O4—Cd1—O6 <sup>xix</sup>                    | 83.47 (9)  |
| O1—Cd1—O3                                | 90.0 (2)    | O4—Cd1—O3                                   | 84.11 (8)  |
| O1—Cd1—O4                                | 91.81 (10)  | O4—Cd1—O5 <sup>xx</sup>                     | 95.24 (10) |
| O1—Cd1—O5 <sup>xx</sup>                  | 92.8 (2)    | O5 <sup>xx</sup> —Cd1—O6 <sup>xix</sup>     | 92.51 (11) |

| O2—Cd1—O6 <sup>xix</sup> | 91.05 (9) | O5 <sup>xx</sup> —Cd1—O3 | 177.10 (9) |
|--------------------------|-----------|--------------------------|------------|
| O2—Cd1—O3                | 91.87 (8) |                          |            |

Symmetry code(s): (i) -x+y+1, -x+1, z; (ii) -y+1, x-y, z; (iii) -x+4/3, -y+2/3, -z+2/3; (iv) y+1/3, -x+y+2/3, -z+2/3; (v) x-y+1/3, x-1/3, -z+2/3; (vi) x-y+2/3, -y+4/3, -z+5/6; (vii) -x+3/2, -y+1/2, -z+3/2; (viii) x, -y, z; (ix) -x+1, y, -z+1; (x) -x+1, y, -z+2; (xi) -x+1, y+1/2, -z+3/2; (xii) x, y+1, z; (xiii) -x, -y+1, -z+1; (xiv) -x+1, -y+1, -z+1; (xv) -x, y+1/2, -z+3/2; (xvi) x, -y+3/2, -z+3/2; (xvi) -x+3/2, -z+3/2; (xvi) -x+3/2, -z+3/2; (xvi) -x+3/2, -z+1/2; (xvi) -x+3/2, -z+1/2, (xvi) -x+1/2, -z+1/2, -z+1/2; (xvi) -x+1, -y+1, -z+1; (xv) -x+1/2, -z+1/2, -z+1/2; (xvi) -x+1, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x+1, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x+1, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x+1, -y+1, -z+1; (xv) -x+1/2, -z+1/2; (xvi) -x+1/2, -z+1/2; (xvi) -x+1, -z+1, -z+1/2; (xvi) -x+1/2, -z+1/2; (xvi) -x+1, -z+1, -z+1/2; (xvi) -z+1, -z+1, -z+1, -z+1/2; (xvi) -z+1, -z+1, -z+1/2; (xvi) -z

## Table S3. Selected hydrogen-bond parameters

| D—H···A                                  | D—H (Å)  | H…A (Å)  | D…A (Å)     | D—H…A (°) |
|------------------------------------------|----------|----------|-------------|-----------|
| [GUA]Cd(H <sub>2</sub> POO) <sub>3</sub> |          |          |             |           |
| N1—H1A…O1 <sup>iii</sup>                 | 0.86     | 2.11     | 2.9410 (17) | 162.8     |
| N1—H1B…O1                                | 0.86     | 2.11     | 2.9410 (17) | 162.8     |
| [GUA]Co(H <sub>2</sub> POO               | )3       | ·        | ·           |           |
| N1—H1A…O1 <sup>i</sup>                   | 0.86     | 2.08     | 2.8971 (17) | 159.3     |
| N1—H1B…O1                                | 0.86     | 2.07     | 2.8971 (17) | 162.5     |
| N2—H2C···O2 <sup>ii</sup>                | 0.86     | 2.11     | 2.957 (2)   | 170.5     |
| N2—H2D····O3 <sup>i</sup>                | 0.86     | 2.27     | 2.958 (2)   | 136.6     |
| [IM]Co(H2POO)3                           |          | ·        | ·           |           |
| N1—H1…O2 <sup>II</sup>                   | 0.77 (3) | 2.48 (3) | 2.961 (3)   | 122 (3)   |
| N1—H1···O3 <sup>I</sup>                  | 0.77 (3) | 2.17 (3) | 2.894 (3)   | 157 (3)   |
| N2—H2…O4                                 | 0.85 (3) | 1.95 (3) | 2.741 (3)   | 154 (3)   |
| N2—H2…O5 <sup>III</sup>                  | 0.85 (3) | 2.51 (3) | 3.073 (3)   | 124 (3)   |
| [IM]Cd(H2POO)3                           |          | ·        |             |           |
| N8—H8…O10 <sup>IV</sup>                  | 0.86     | 2.01     | 2.793 (3)   | 151.7     |
| N6—H6…O2                                 | 0.86     | 1.91     | 2.762 (3)   | 169.8     |
| N3—H3…O5 <sup>v</sup>                    | 0.86     | 1.98     | 2.781 (3)   | 153.8     |
| N1—H1…O1                                 | 0.86     | 1.95     | 2.757 (3)   | 156.5     |
| С7—Н7…О4                                 | 0.93     | 2.28     | 3.050 (4)   | 139.7     |
| С5—Н5…О8                                 | 0.93     | 2.39     | 3.276 (4)   | 160.4     |
| [PYR]Cd(H <sub>2</sub> POO) <sub>3</sub> |          |          |             |           |
| N1—H1E…O6                                | 0.89     | 1.95     | 2.813 (4)   | 162.7     |
| N1—H1F…O3 <sup>VI</sup>                  | 0.89     | 2.08     | 2.914 (3)   | 156.7     |

Symmetry code(s): (iii) -x+2/3, -x+y+1/3, -z+5/6; (i) x, -y+1, z; (ii) x-1/2, y+1/2, z+1/2; (I) -x+1, y-1/2, -z+3/2; (II) -x+1, -y+1, -z+1; (III) -x+3/2, y-1/2, z; (IV) -x+1, -y, -z+1; (V) -x+1, -y+1, -z+1; (VI) x+1/2, -y+3/2, z.



Figure S1. Experimental XRD patterns of the studied compounds together with the calculated ones based on the RT crystal structures.



Figure S2. The asymmetric units (atom drawn as front ellipses) together with hydrogen bond interactions (black dashed lines) in a series of Co and Cd hypophosphites. The ellipsoids are drawn at a 50% probability level.



Figure S3 The asymmetric unit for  $[PYR]Cd(H_2POO)_3$  (left); the distribution of PYR<sup>+</sup> in 1/2a, b, c cell (right).



Figure S4. A comparison of SHG traces for  $[PYR]Cd(H_2POO)_3$  (red) and that of KDP (black). The collection time of SHG signals for both,  $[PYR]Cd(H_2POO)_3$  and KDP, was equal to 1000 ms. Powders of both compounds were sieved into 88 - 125 µm particle size range.



Figure S5. Normalized emission spectra of  $[GUA]Cd(H_2POO)_3$  (black line),  $[PYR]Cd(H_2POO)_3$  (red line), and  $[IM]Cd(H_2POO)_3$  (green line) registered at 80 K.



Figure S6. Deconvolution of [GUA]Cd(H<sub>2</sub>POO)<sub>3</sub> sample emission spectrum recorded under 266 nm at 80 K.



Figure S7. Deconvolution of [PYR]Cd(H<sub>2</sub>POO)<sub>3</sub> sample emission spectrum recorded under 266 nm at 80 K.



Figure S8. Deconvolution of  $[IM]Cd(H_2POO)_3$  sample emission spectrum recorded under 266 nm at 80 K.



Figure S9. Thermal evolution of emission intensity (contour map) of (a)  $[GUA]Cd(H_2POO)_3$ , (b)  $[PYR]Cd(H_2POO)_3$  and (c)  $[IM]Cd(H_2POO)_3$ .



Figure S10. Integrated emission intensity as a function of temperature, in the inset activation energies ( $E_a$ ) calculated from a function of  $ln(I_0/I-1)$  versus 1/kT for (a) [GUA]Cd(H<sub>2</sub>POO)<sub>3</sub>, (b) [PYR]Cd(H<sub>2</sub>POO)<sub>3</sub> and (c) [IM]Cd(H<sub>2</sub>POO)<sub>3</sub>.