Electronic Supplementary Information

Facile Synthesis and Utilization of Bis(*o*-phosphinophenyl)zinc as Isolable PZnP-pincer Ligands Enabled by Boron-Zinc Double Transmetallation

Kazuishi Fukuda^a, Takuma Harada^a, Nobuharu Iwasawa^a and Jun Takaya^{*ab}

^{*a*}Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan ^{*b*}JST, PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan

Table of Contents

S2	General methods
S3-S4	Preparation of arylboronates 1a and 1b
S4	Investigation on reaction conditions for the boron-zinc transmetallation
S4-S5	Monitoring of the reaction of 1a with alkylzinc reagents by ³¹ P NMR (Figure S1 and S2)
S6	Synthesis of $bis(o-phosphinophenyl)$ zinc 2 via boron-zinc double transmetallation
S7-S8	X-ray diffraction analysis of 2a and 2b (Figure S3, Table S1)
S9	Synthesis of a PZnP-Pd complex 3a
S9-S10	X-ray diffraction analysis of 3a (Figure S4, Table S2)
S11	Synthesis of PZnP-Ru complexes 4a and 4b
S12-13	X-ray diffraction analysis of 4a and 4b (Figure S5, Table S3)
S14-S16	Computational details (Figure S6, Table S4)
S17	Reference
S18-S35	¹ H, ¹³ C, and ³¹ P NMR spectra

General: All operations were performed under an argon atmosphere. ¹H, ¹¹B, ¹³C and ³¹P spectra were recorded on a JEOL ECS-400 (400 MHz for ¹H, 128 MHz for ¹¹B, 100 MHz for ¹³C, and 160 MHz for ³¹P) or a JEOL ECX-400 (400 MHz for ¹H and 160 MHz for ³¹P) or a JEOL ECZ-500 (500 MHz for ¹H, 125 MHz for ¹³C, and 200 MHz for ³¹P) or a JEOL ECX-500 (500 MHz for ¹H, 160 MHz for ¹¹B, 125 MHz for ¹³C, and 200 MHz for ³¹P) spectrometer in CDCl₃ or C₆D₆ or THF-d₈. Chemical shifts are expressed in parts per million (ppm) downfield from tetramethylsilane ($\delta_{\rm H}$ 0.00, $\delta_{\rm C}$ 0.00), BF₃•OEt₂ ($\delta_{\rm B} = 0.00$), 85% H₃PO₄ aq. ($\delta_{\rm P}$ 0.00) and are referenced to residual solvents (δ_H 7.26 and δ_C 77.0 for chloroform, δ_H 7.16 and δ_C 128.1 for C₆D₆, and δ_H 3.58 and δ_C 67.2 for THF-d₈). IR spectra were recorded on an FT/IR-460 plus (JASCO Co., Ltd.) with ATR PRO450-S accessory (JASCO Co., Ltd.) or an Agilent Cary 630 FTIR (Agilent Technologies Co., Ltd.). High resolution mass spectra (HRMS) were recorded on a BRUKER micrOTOF II. Crystal data were collected by a Rigaku XtaLAB Synergy R DW HyPix system equipped with a Rigaku GNNP low-temperature device. Silica Gel 60 (Kanto Chemical Co., Inc.) was used for flash column chromatography. Merck Kieselgel 60 F254 (0.25 mm thickness, coated on glass 20 x 20 cm²) plate was used for analytical thin layer chromatography (TLC). Et₂O, THF, toluene, and hexane were purified by solvent purification system of Glass-Contour. Benzene-d₆ and THF-d₈ were purchased from Kanto Chemicals and dried and degassed by benzophenone ketyl. Chloroform- d_1 was purchased from Kanto Chemicals. Benzene was purchased from Kanto Chemicals and degassed by freeze-dry technique.

Preparation of arylboronate 1a

o-(Diphenylphosphino)phenylboronate **1a** was synthesized in a 30 mmol scale by the Ru-catalyzed *ortho* C–H borylation reaction reported by our group.^{S1}

A solution of dichloro(*p*-cymene)ruthenium dimer (91.9 mg, 0.15 mmol) and triphenylphosphine (7.87 g, 30.0 mmol) in toluene (20.0 mL) was placed in a Schlenk flask under Ar. HBpin (4.40 mL, 30.6 mmol) was added to the solution at room temperature, then the mixture was stirred at 140 °C in the closed system. After 6 h, saturated NaHCO₃ aq. was added to the solution at room temperature, and the mixture was extracted with AcOEt three times, and the combined organic layers were washed with brine and dried over MgSO₄. After filtration to remove the drying agent, the filtrate was evaporated to give a crude product. Reprecipitation from Et₂O afforded *o*-(diphenylphosphino)phenylboronate **1a** as white solids (7.63 g, 19.7 mmol, 65.7%). The resulting filtrate was purified by silica gel column chromatography (Hexane:AcOEt = 19:1) to give **1a** (1.38 g, 3.55 mmol, 11.8%). ¹H NMR (CDCl₃, 500 MHz) δ = 7.83-7.79 (m, 1H), 7.32-7.27 (m, 12H), 6.80-6.76 (m, 1H), 1.09 (s, 12H); ³¹P NMR (CDCl₃, 200 MHz) δ = -3.5. The spectral data were in good agreement with literature values.^{S1}

Preparation of arylboronate 1b

o-(Dicyclohexylphosphino)phenylboronate **1b** can be synthesized by the Rh-catalyzed *ortho* C–H borylation reaction of dicyclohexylphenylphosphine reported by Shi.^{S2} However, we prepared it in a 15 mmol scale by a classical method, that is a reaction of o-(dicyclohexylphosphino)phenyllithium with a boron electrophile, due to the availability of reagents and reliability in a large scale.

A solution of (*o*-dicyclohexylphosphino)bromobenzene (5.30 g, 15 mmol) in THF (60 mL) was placed in a 200 mL two necked flask under Ar. "BuLi (1.59 M hexane solution, 10.4 mL, 16.5 mmol) was added to the solution at – 78 °C, and then the mixture was stirred at –78 °C. After 2 h, ^{*i*}PrOBpin was added to the solution at –78 °C, and the reaction mixture was allowed to stand at room temperature gradually. After 20 h, the reaction was quenched with sat. NH₄Cl aq. The resulting mixture was extracted with Et₂O three times, and the combined organic layers were washed with water, brine, and dried over MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by silica gel chromatography (Hexane:AcOEt = 9:1, R_f = 0.39) to give **1b** as colorless oil (5.11 g, 12.7 mmol, 85%). ¹H NMR (CDCl₃, 500 MHz) δ = 7.51-7.44 (m, 2H), 7.34-7.26 (m, 2H), 1.92-1.83 (m, 4H), 1.79-1.73

(m, 2H), 1.70-1.52 (m, 6H), 1.39 (s, 12H), 1.35-1.04 (m, 10H); ¹¹B NMR (CDCl₃, 160 MHz) δ = 29.3 (br s); ¹³C NMR (CDCl₃, 125 MHz) δ = 140.4 (d, *J* = 19.3 Hz), 132.5 (d, *J* = 14.4 Hz), 131.8 , 128.4, 127.6, 83.9, 34.1 (d, *J* = 13.3 Hz), 30.1 (d, *J* = 16.8 Hz), 29.5 (d, *J* = 9.6 Hz), 27.2 (d, *J* = 21.5 Hz), 27.1, 26.5, 25.0, 1C(*C*–B) is missing.; ³¹P NMR (CDCl₃, 200 MHz) δ = -0.6; IR (ATR) 2976.6, 2921.6, 2847.4, 1445.4, 1372.1, 1348.0, 1304.6, 1143.6, 1099.2, 1048.1 cm⁻¹. HRMS (ESI): Calcd for C₂₄H₃₉BO₂P [M+H]⁺:401.2781; Found: 401.2759.

Investigation on reaction conditions for the boron-zinc transmetallation (Table 1)

A solution of **1a** (77.7 mg, 0.20 mmol) in toluene (2.0 mL) was placed in a two-necked flask equipped with a three-way stopcock and balloon under Ar. Diethylzinc (1.0 M in hexane) or dimethylzinc (0.72 M in hexane) was added to the solution at room temperature, and then the mixture was stirred under the conditions depicted in Table 1. The reaction was quenched with 1 M HCl aq., and the resulting mixture was extracted with Et₂O three times, and the combined organic layers were washed with water, brine, and dried over MgSO₄. After filtration, the yields of triphenylphosphine and triphenylphosphine oxide were determined by GC analysis of the filtrate using "dodecane as an internal standard. After evaporation of the solvent, the crude product was also analyzed by ¹H NMR to determine the yield of **1a** using 1,1,2,2-tetrachloroethane as an internal standard. The combined yields of triphenylphosphine oxide were depicted in the Table 1 as yields of protonation products.

Monitoring of the reaction of 1a with alkylzinc reagents by ³¹P NMR

A solution of **1a** (19.4 mg, 50.0 μ mol) and dialkylzinc (50 μ mol) in toluene (0.5 mL) was placed in a sealed NMR tube under Ar and heated at various temperatures (40~70 °C). In both cases using ZnEt₂ or ZnMe₂ as alkylzinc reagents, the ³¹P NMR exhibited the generation of a singlet around $\delta = 4$ as a major species, which is identical to that of the isolated bis(*o*-(diphenylphosphino)phenyl)zinc **2a** (Figure S1 and S2). **2a** existed as a major compound even at 40 °C after 1 h along with a small amount of boronate **1a**, demonstrating the facile boron-zinc transmetallation (Figure S1-d). These results support that the reaction affords diarylzinc **2a** selectively regardless of the type of alkylzinc reagents (ZnEt₂ or ZnMe₂). It should also be noted that the formation of monoarylzinc, ArZnEt, is not a

major pathway despite the use of a stoichiometric amount of dialkylzinc to boronate, indicating that the formation of diarylzinc with the *ortho* PPh₂ substituent is thermodynamically favored.

Figure S1. ³¹P NMR of the reaction of 1a with ZnMe₂ at 70 $^{\circ}$ C (a), 60 $^{\circ}$ C (b), 50 $^{\circ}$ C (c), 40 $^{\circ}$ C (d).

Figure S2. ³¹P NMR of the reaction of 1a with ZnEt₂ at 70 °C.

Synthesis of bis(o-phosphinophenyl)zinc 2 via boron-zinc double transmetallation (Scheme 1)

Bis(o-(diphenylphosphino)phenyl)zinc 2a

A solution of **1a** (1.94 g, 5.0 mmol) in toluene (12 mL) was placed in a Schlenk tube equipped with a glass cock under Ar. Dimethylzinc (1.0 M in heptane, 3.5 mL, 3.5 mmol) was added to the solution at room temperature, and then the mixture was stirred at 100 °C. After 2 h, the solvent was removed under reduced pressure, and the obtained crude material was purified by reprecipitation from THF/hexane to give **2a** as white solids (1.18 g, 2.01 mmol, 80%). ¹H NMR (C₆D₆, 500 MHz) δ = 7.65 (d, *J* = 6.5 Hz, 2H), 7.38-7.32 (m, 8H), 7.27 (dd, *J* = 7.5, 5.0 Hz, 2H), 7.18 (td, *J* = 7.5, 1.5 Hz, 2H), 7.06 (t, *J* = 8.0 Hz, 2H), 6.97-6.92 (m, 12H); ¹³C NMR (C₆D₆, 125 MHz) δ = 168.5 (d, *J* = 78.7 Hz), 144.2 (d. *J* = 21.3 Hz), 138.9 (d, *J* = 30.0 Hz), 136.7, 134.1 (d, *J* = 15.0 Hz), 132.1 (d, *J* = 5.0 Hz), 129.0, 128.8 (d, *J* = 7.5 Hz), 128.5, 127.5; ³¹P NMR (C₆D₆, 200 MHz) δ = 3.5; IR (ATR) 3045.2, 3030.3, 1477.9, 1431.3, 1420.1, 1086.5, 1025.0 cm⁻¹. The satisfactory data for elemental analysis and high resolution mass spectrometry were not obtained due to decomposition during the analyses.

Bis(o-(dicyclohexylphosphino)phenyl)zinc 2b

2b was prepared in the same manner as described above using **1b** (3.83 g, 9.6 mmol) and dimethylzinc (1.0 M in heptane, 6.7 mL, 6.7 mmol). The obtained crude material was dissolved into hexane and recrystallized at $-30 \,^{\circ}$ C to give **2b** as white solids (1.37 g, 2.24 mmol, 47%). ¹H NMR (C₆D₆, 500 MHz) δ = 7.99 (d, *J* = 7.0 Hz, 2H), 7.45 (t, *J* = 7.0 Hz, 2H), 7.40 (td, *J* = 7.5, 1.0 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 2H), 2.03-1.93 (m, 8H), 1.82-1.51 (m, 16H), 1.38-1.02 (m, 20H); ¹³C NMR (C₆D₆, 125 MHz) δ = 170.5 (d, *J* = 96.3 Hz), 144.3 (d, *J* = 12.5 Hz), 137.9 (d, *J* = 36.3 Hz), 130.8, 129.2, 127.2, 33.6 (d, *J* = 8.8 Hz), 30.7 (d, *J* = 13.6 Hz), 29.4, 27.5 (d, *J* = 12.5 Hz), 27.4 (d, *J* = 6.3 Hz), 26.8; ³¹P NMR (C₆D₆, 200 MHz) δ = 21.0; IR (ATR) 3021.0, 2918.5, 2845.8, 1444.3, 1341.8, 1254.2, 1176.0, 1090.2, 1043.7 cm⁻¹. The satisfactory data for elemental analysis and high resolution mass spectrometry were not obtained due to decomposition during the analyses.

X-ray diffraction analysis of 2a and 2b

Crystal data were collected by a Rigaku XtaLAB Synergy R DW HyPix system equipped with a Rigaku GNNP low-temperature device using Cu Ka radiation ($\lambda = 1.54184$ Å). Recrystallization of **2a** and **2b** from Et₂O/hexane afforded single crystals suitable for X-ray diffraction analysis (Figure S3 and Table S1).

Figure S3. ORTEP drawings of **2a** (a) and **2b** (b) at 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **2a**: Zn1–C1 = 2.002(3), Zn1–C2 = 2.003(4), Zn1–P4 = 2.478(1), Zn1–P1 = 2.941(1), C1–Zn1–C2 = 142.2(1); for **2b**: Zn1–C1 = 1.9407(16), Zn1–C2 = 1.9407(16), C1–Zn1–C2 = 180.0.

	2a	2b
Formula	$C_{36}H_{28}P_2Zn$	$C_{36}H_{52}P_2Zn$
Formula weight	587.89	612.08
Temperature /K	123(2)	123(2)
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ / <i>n</i> (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)
Crystal color	colorless	colorless
Crystal size	0.05 x 0.02 x 0.02	0.10 x 0.10 x 0.03
a /Å	14.8373(2)	9.46080(10)
b/Å	9.6322(2)	8.88880(10)
c /Å	20.4511(2)	19.8948(2)
α/deg	90	90
β/deg	92.515(2)	103.4176(12)
γ/deg	90	90
$V/Å^3$	2919.97(9)	1627.39(3)
Ζ	4	2
μ (Cu Ka) /cm ⁻¹	1.54184	1.54184
Reflections collected	19673	11128
Unique reflections	5808	3282
Refined parameters	352	178
GOF on F^2	1.066	1.064
$R_1 [I > 2 f(I)]^a$	0.0542	0.0344
w R_2 (all data) ^b	0.1481	0.0971

Table S1. Crystallographic data of 2a and 2b

^a $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo|, {}^{b} wR_2 = [\Sigma(w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2)^{1/2}]$

Synthesis of the PZnP-Pd complex 3 (Scheme 2)

Bis(*o*-(diphenylphosphino)phenyl)zinc **2a** (176 mg, 0.30 mmol) and Pd(PPh₃)₄ (347 mg, 0.30 mmol) were placed in a round bottom flask and dissolved in benzene at room temperature, and then the mixture was stirred at room temperature for 30 min. The solvent was removed under reduced pressure, and the obtained crude material was purified by reprecipitation from THF/hexane to give the PZnP-Pd complex **3a** as yellow solids (272 mg, 0.284 mmol, 95%). ¹H NMR (THF-*d*₈, 500 MHz) δ = 7.80 (d, *J* = 6.0 Hz, 2H), 7.16-6.93 (m, 41H); ¹³C NMR (THF-*d*₈, 125 MHz) δ = 171.8 (vt, *J* = 45.0 Hz), 149.2 (vt, *J* = 22.5 Hz), 140.0 (vt, *J* = 13.8 Hz), 138.5 (vt, *J* = 18.8 Hz), 134.4 (d, *J* = 16.3 Hz), 134.1 (vt, *J* = 6.3 Hz), 131.2, 128.8, 128.5, 128.4 (d, *J* = 6.3 Hz), 128.2 (vt, *J* = 3.8 Hz), 128.0, 126.2, 1C is missing due to overlapping.; ³¹P NMR (C₆D₆, 200 MHz) δ = 44.1, 12-16 (br). ; IR (ATR) 3035.9, 1476.0, 1431.3, 1086.5, 1035.0 cm⁻¹. Anal. Calcd for C₅₄H₄₃P₃PdZn: C, 67.80; H, 4.53; Found: C, 67.07; H, 4.70. Although the %C is slightly outside the acceptable range, this is the best value obtained to date.

X-ray diffraction analysis of 3a

Crystal data were collected by a Rigaku XtaLAB Synergy R DW HyPix system equipped with a Rigaku GNNP low-temperature device using Cu Ka radiation ($\lambda = 1.54184$ Å). Recrystallization of **3a** from Et₂O/hexane afforded single crystals suitable for X-ray diffraction analysis (Figure S4 and Table S2).

Figure S4. ORTEP drawing of **3a** at 30% probability level. Hydrogen atoms and a solvent molecule (Et₂O) are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pd–Zn = 2.6399(5), Pd–P1 = 2.3270(7), Pd–P2 = 2.3095(7), Pd–P3 = 2.3917(7), Zn–C1 = 1.983(3), Zn–C2 = 1.973(3), C1–Zn–C2 = 149.3(1), P1–Pd–P2 = 140.41(3), P3–Pd–Zn = 166.21(2).

	3a
Formula	$C_{56}H_{48}O_{0.5}P_3PdZn$
Formula weight	993.62
Temperature /K	123(2)
Crystal system	triclinic
Space group	<i>P</i> -1 (#2)
Crystal color	yellow
Crystal size	0.10 x 0.02 x 0.01
<i>a</i> /Å	9.1351(2)
b/Å	13.0286(3)
c /Å	20.1713(6)
α/deg	93.909(2)
β/deg	97.565(2)
γ/deg	96.028(2)
$V/\text{\AA}^3$	2358.48(10)
Ζ	2
μ (Cu K α) /cm ⁻¹	1.54184
Reflections collected	26767
Unique reflections	9091
Refined parameters	557
GOF on F^2	1.037
$R_1 \left[I > 2 \int (I) \right]^a$	0.0333
w R_2 (all data) ^b	0.0851

 $\overline{{}^{a}R_{1} = \Sigma ||Fo|} - ||Fc|| / \Sigma ||Fo|, {}^{b}wR_{2} = [\Sigma(w(Fo^{2}-Fc^{2})^{2}/\Sigma w(Fo^{2})^{2})^{1/2}]$

Synthesis of PZnP-Ru complexes 4a and 4b (Scheme 3)

PZnP-Ru complex 4a

2a (176 mg, 0.30 mmol) and Ru₃(CO)₁₂ (63.9 mg, 0.10 mmol) were placed in a round bottom flask and dissolved in toluene at room temperature, and then the mixture was stirred at 100 °C. After 2 h, the solvent was removed under reduced pressure, and the obtained crude material was purified by reprecipitation from THF/hexane to give the PZnP-Ru complex **4a** as pale yellow solids (108 mg, 0.140 mmol, 47%). ¹H NMR (C₆D₆, 500 MHz) δ = 8.32 (d, *J* = 7.0 Hz, 2H), 7.70-7.64 (m, 8H), 7.60-7.56 (m, 2H), 7.33 (td, *J* = 7.0, 1.0 Hz, 2H), 7.01 (td, *J* = 7.5, 2.0 Hz, 2H), 6.95-6.89 (m, 12H); ³¹P NMR (THF-*d*₈, 200 MHz) δ = 62.6. These spectral data were in good agreement with literature values.^{S3}

PZnP-Ru complex 4b

4b was prepared in the same manner as above using **2b** (184 mg, 0.30 mmol) and Ru₃(CO)₁₂ (63.9 mg, 0.10 mmol). The obtained crude material was purified by reprecipitation from toluene/hexane to give **4b** as a pale yellow solid (77.5 mg, 0.0972 mmol, 32%). ¹H NMR (C₆D₆, 500 MHz) $\delta = 8.28$ (d, J = 6.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.36 (t, J = 6.5 Hz, 2H), 7.19 (td, J = 7.5, 1.5 Hz, 2H), 2.32-2.34 (m, 4H), 2.03 (d, J = 13.5 Hz, 4H), 1.86 (d, J = 13.5 Hz, 4H), 1.70-1.41 (m, 20H), 1.29-1.00 (m, 12H); ¹³C NMR (THF-*d*₈, 125 MHz) = 207.9 (t, J = 15.0 Hz), 205.6, 173.2 (t, J = 26.3 Hz), 144.7 (vt, J = 26.4 Hz), 139.10, 139.09 (d, J = 25.0 Hz), 130.8 (vt, J = 3.8 Hz), 128.4, 125.2, 41.6 (vt, J = 11.3 Hz), 30.7, 29.8, 28.1 (vt, J = 3.8 Hz), 27.7 (vt, J = 3.8 Hz), 27.0; ³¹P NMR (THF-*d*₈, 100 MHz) $\delta = 69.7$; IR (ATR) 2972.6, 2899.9, 2842.1, 2007.3, 1947.5, 1928.9, 1900.9, 1444.3, 1259.8, 1086.5, 1045.5, 1000.8 cm⁻¹. Anal. Calcd for C₃₉H₅₂O₃P₂RuZn: C, 58.76; H, 6.57; Found: C, 58.17; H, 6.57. Although the %C is slightly outside the acceptable range, this is the best value obtained to date.

X-ray diffraction analysis of 4a and 4b

Crystal data were collected by a Rigaku XtaLAB Synergy R DW HyPix system equipped with a Rigaku GNNP low-temperature device using Cu Ka radiation ($\lambda = 1.54184$ Å). Recrystallization of **4a** from toluene/Et₂O and **4b** from toluene/hexane afforded single crystals suitable for X-ray diffraction analysis (Figure S5 and Table S3).

Figure S5. ORTEP drawing of **4a** (b) and **4b** (b) at 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **4a**: Ru–Zn = 2.7343(5), Ru–P1 = 2.3490(9), Ru–P2 = 2.3604(9), Zn–C1 = 2.013(3), Zn–C2 = 2.012(3), Zn–O = 2.297(3), P1–Pd–P2 = 164.01(3), C1–Zn–C2 = 145.3(1); for **4b**: Ru–Zn = 2.6983(5), Ru–P1 = 2.3954(9), Ru–P2 = 2.385(1), Zn–C1 = 1.975(4), Zn–C2 = 1.978(4), P1–Pd–P2 = 153.13(3), C1–Zn–C2 = 152.7(1).

Table S3. (Crystallogra	phic data	of 4a	and 4b
-------------	--------------	-----------	-------	--------

	4a	4b
Formula	$C_{43}H_{38}O_4P_2RuZn$	$C_{39}H_{52}O_3P_2RuZn$
Formula weight	847.11	797.18
Temperature /K	123(2)	123(2)
Crystal system	triclinic	Orthorhombic
Space group	<i>P</i> -1 (#2)	Pna21 (#33)
Crystal color	yellow	yellow
Crystal size	0.07 x 0.03 x 0.02	0.06 x 0.05 x 0.04
<i>a</i> /Å	9.8387(2)	17.5815(2)
b/Å	13.5839(4)	11.45430(10)
c /Å	15.1541(6)	18.0955(2)
α/deg	100.156(3)	90
β/deg	91.955(3)	90
γ/deg	108.525(2)	90
$V/Å^3$	1881.45(10)	3644.14(7)
Ζ	2	4
$\mu \left(Cu \ K\alpha \right) / cm^{-1}$	1.54184	1.54184
Reflections collected	20345	19129
Unique reflections	7214	4864
Refined parameters	462	416
GOF on F^2	1.044	1.046
$R_1 [I > 2 f(I)]^a$	0.0343	0.0248
w R_2 (all data) ^b	0.0877	0.0588

^a $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo|, {}^{b} wR_2 = [\Sigma(w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2)^{1/2}]$

Computational details

All calculations were performed with the Gaussian 16 program package (revision A.03).^{S4} Equilibrium structures were optimized by density functional theory (DFT) using the B3PW91 hybrid functional with tight SCF convergence and ultrafine integration grids. Empirical dispersion correction was included. The LANL2DZ basis set, including a double-z valence basis set with the Hay and Wadt effective core potential (ECP), was used for palladium and zinc, and the 6-31G(d,p) basis set was used for carbon, hydrogen, and phosphorus. Each of the stationary points was adequately characterized by normal coordinate analysis (no imaginary frequency for an equilibrium structure). In all calculations, the temperature was set to 298.15 K. Natural bond orbital (NBO) analysis was performed at the same level of theory using the NBO 7 package.^{S5}

NBO analysis on the PZnP-Pd complex 3a

NBO analysis was performed on the optimized structure of **3a**. The Pd–Zn bond mainly consists of a donor-acceptor interactions between an occupied d_{x2-y2} orbital of Pd and an unoccupied s-type orbital of Zn as shown in Figure S6. This donor-acceptor interaction lead to stabilization in 7.5 kcal/mol. This result strongly supports that the Zn-metalloligand serves as a Z-type, σ -acceptor ligand for palladium.

Figure S6. Donor and acceptor orbitals for the Pd–Zn bond and the stabilization energy calculated by NBO analysis. LP denotes a lone pair orbital, LV denotes a lone vacancy (unoccupied valence orbital), and occ denotes the electron occupancy.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	46	0	0.020433	-0.199148	-0.512718
2	30	0	-0.054902	-2.957615	-1.096426
3	15	0	-2.188852	-0.835564	-0.142765
4	15	0	2.168522	-1.067395	-0.167881
5	15	0	0.137679	2.158935	-0.209573
6	6	0	-2.695088	-2.586219	0.146485
7	6	0	-1.862382	-3.586790	-0.382834
8	6	0	-2.290413	-4.917245	-0.229856
9	1	0	-1.675679	-5.726841	-0.620946
10	6	0	-3.476345	-5.237026	0.430186
11	1	0	-3.777333	-6.276372	0.542571
12	6	0	-4.274349	-4.221764	0.962637
13	1	0	-5.193080	-4.466381	1.489856
14	6	0	-3.886990	-2.893613	0.819486
15	1	0	-4.501005	-2.104411	1.247052
16	6	0	2.835822	-2.420257	-1.212597
17	6	0	1.874788	-3.333165	-1.695033
18	6	0	2.355240	-4.414878	-2.447696
19	1	0	1.655769	-5.155648	-2.833035
20	6	Õ	3 714170	-4 565355	-2 736593
20	1	Ő	4 053728	-5 401992	-3 343498
21	6	Õ	4 638896	-3 642371	-2 248793
22	1	0	5 697219	-3 758389	-2 468511
23	6	0	4 203212	-2 569980	-1 472072
25	1	0	4.022143	-1.856825	-1.076579
25	6	0	2 673706	0.022670	1 /3166/
20	6	0	-2.073790	-0.597804	2 611003
27	1	0	1 580120	1 507878	2.011003
20	6	0	-1.380129	-1.507878	2.557257
29	1	0	-2.415252	-0.004830	3.843299 1 716999
21	1	0	-2.018303	-0.403333	4.740000
22	0	0	-3.138408	1.1/3308	5.925475
32	I	0	-3.349027	1.638939	4.88/619
33	0	0	-3.041335	1./031/0	2.755450
34	I	0	-4.19/415	2.695149	2.797585
35	6	0	-3.39/991	1.172574	1.514236
36	I	0	-3./58602	1.660457	0.615148
3/	6	0	-3.412507	-0.295447	-1.401/30
38	6	0	-4.//1959	-0.090844	-1.13/899
39	I	0	-5.15/640	-0.231420	-0.132849
40	6	0	-5.634540	0.310/84	-2.155228
41	I	0	-6.685116	0.480414	-1.935322
42	6	0	-5.154299	0.491646	-3.452851
43	I	0	-5.829517	0.804350	-4.244680
44	6	0	-3.80/008	0.262683	-3./31694
45	I	0	-3.42/426	0.394440	-4./41210
46	6	0	-2.942/84	-0.12658/	-2./10240
4/	I	0	-1.884150	-0.282953	-2.9111/9
48	6	0	2.019979	-1.80805/	1.508810
49	6	0	2.236397	-3.16//14	1./58506
50	I	0	2.604052	-3.811129	0.964508
51	6	0	1.963854	-3.699230	3.020504
52	I	0	2.125858	-4./58392	3.201/31
53	6	0	1.48/6/4	-2.880/46	4.043042
54	1	0	1.2/3//3	-5.500654	5.022200
55	0	0	1.285521	-1.519/30	3.802285
56		0	0.916262	-0.803823	4.38/603
5/	0	0	1.541083	-0.988622	2.545400
58	I	0	1.357549	0.064280	2.358265
59	6	0	5.570188	0.106125	-0.007631
60	6	0	4.382419	0.205984	1.126479
61	l	0	4.218766	-0.457428	1.969942
62	6	0	5.384950	1.174345	1.187623
63	l	0	6.005895	1.247987	2.076600
64	6	0	5.582890	2.052956	0.122979
65	1	0	6.352241	2.817936	0.183356

 TableS4. Cartesian coordinates of the optimized structure of 3a

66	6	0	4.789897	1.944893	-1.021610
67	1	0	4.923460	2.628411	-1.855042
68	6	0	3.797196	0.972527	-1.084701
69	1	0	3.172659	0.899436	-1.968005
70	6	0	0.829298	2.466534	1.455983
71	6	0	-0.005378	2.251167	2.565324
72	1	0	-1.058209	2.040128	2.418253
73	6	0	0.510373	2.281019	3.856819
74	1	0	-0.157287	2.108646	4.696204
75	6	0	1.872294	2.506767	4.063564
76	1	0	2.279258	2.517250	5.070884
77	6	0	2.709421	2.702366	2.967040
78	1	0	3.775045	2.854980	3.109368
79	6	0	2.196775	2.682381	1.670425
80	1	0	2.872583	2.807373	0.830617
81	6	0	1.180920	3.123036	-1.372544
82	6	0	1.724415	4.375624	-1.064264
83	1	0	1.552202	4.812326	-0.084415
84	6	0	2.497337	5.055016	-2.002466
85	1	0	2.928549	6.019942	-1.749867
86	6	0	2.712355	4.502823	-3.266479
87	1	0	3.314184	5.036073	-3.997361
88	6	0	2.148084	3.269821	-3.591880
89	1	0	2.308523	2.837436	-4.575687
90	6	0	1.389229	2.582218	-2.646199
91	1	0	0.971348	1.604059	-2.877721
92	6	0	-1.408951	3.155784	-0.267306
93	6	0	-1.784199	4.127128	0.666382
94	1	0	-1.125609	4.372214	1.493862
95	6	0	-3.020313	4.763578	0.555933
96	1	0	-3.309438	5.504760	1.296513
97	6	0	-3.885320	4.450933	-0.492948
98	1	0	-4.853156	4.939615	-0.564959
99	6	0	-3.500550	3.511007	-1.450467
100	1	0	-4.163475	3.247513	-2.269430
101	6	0	-2.270350	2.871628	-1.333825
102	1	0	-1.988509	2.115045	-2.057935

References

- 1. K. Fukuda, N. Iwasawa, J. Takaya, Angew. Chem. Int. Ed. 2019, 58, 2850–2853.
- 2. J. Wen, D. Wang, J. Qian, D. Wang, C. Zhu, Y. Zhao, Z. Shi, Angew. Chem. Int. Ed. 2019, 58, 2078–2082.
- F. M. Miloserdov, C. J. Isaac, M. L. Beck, A. L. Burnage, J. C. B. Farmer, S. A. Macgregor, M. F. Mahon, M. K. Whittlesey, *Inorg. Chem.* 2020, *59*, 15606–15619.
- Gaussian 09, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018).

