Electronic Supplementary Information (ESI)

Utilizing energy transfer mechanism to realize color tunable luminescence

Shuang-Yin Zhu^a, Dan Zhao^{a,b,*}, Rui-Juan Zhang^a, Yan-Ping Fan^{a,*}, Wen Liu^a

^a College of Chemistry and Chemical Engineering, Henan Polytechnic University,

Jiaozuo, Henan 454000, China

^b State Key Laboratory of Structural Chemistry, Fuzhou, Fujian 350002, China

Corresponding authors' E-mails: iamzd1996@163.com (D. Zhao); fanyanping2018@sohu.com (Y. P. Fan)

1. Measurements and Characterization

The XRD analysis was carried out by Rigaku SmartLab 9 KW (40 KV, 150 mA) diffractometer with graphite-monochromated CuK_a characteristic radiation (λ = 1.54059 A), the range of 2 θ is 5–75° (0.02° per step). Structural refinement follows the Riet Vary approach with Common Structural Analysis System (GSAS) procedures. A field emission scanning electron microscope (SEM, Carl Zeiss AG) was used to perform shoot the element mappings. Solid-state ultraviolet–visible absorption spectra (UV-Vis) was measured using a spectrophotometer of Hitachi UH4150 in the range of 200–600 nm. Photoluminescence (PL) spectra and photoluminescence excitation (PLE) spectra were recorded by a FLS1000 Edinburgh Analytical Instrument apparatus. The steady–state measurements were carried out by using the standard 450 W xenon lamps as the excitation source. The PL and PLE spectra were measured by step width 1 nm and integration time 0.2 s. An Edinburgh FLS1000 fluorescence decay curves at room temperature and the temperature dependent decay curves of phosphors. The internal

quantum yield (IQY) was determined by barium sulfate coated integration sphere as a reflectance standard on the same instrument. The temperature dependent emission spectra were measured by high temperature samples detection attachment, which was combined with the FLS1000 Edinburgh.

SLG	SLG:0.02Bi ³⁺	SLG:0.04Bi ³⁺	SLG:0.06Bi ³⁺	SLG:0.08Bi ³⁺	SLG:0.10Bi ³⁺
tetragonal	tetragonal	tetragonal	tetragonal	tetragonal	tetragonal
$P42_1m$	$P42_{1}m$	$P42_{1}m$	$P42_{1}m$	$P42_1m$	$P42_1m$
8.056660	8.056698	8.056033	8.055627	8.055602	8.055500
5.333886	5.333712	5.332926	5.332333	5.332517	5.332979
346.221	346.213	346.105	346.032	346.042	346.063
5–75°	5-75°	5-75°	5-75°	5–75°	5–75°
2	2	2	2	2	2
7.67%	8.09%	10.25%	10.79%	11.24%	12.82%
5.21%	5.25%	6.50	6.46%	6.83%	7.34%
	SLG tetragonal P421m 8.056660 5.333886 346.221 5–75° 2 7.67% 5.21%	SLGSLG: $0.02Bi^{3+}$ tetragonaltetragonal $P42_1m$ $P42_1m$ 8.056660 8.056698 5.333886 5.333712 346.221 346.213 $5-75^{\circ}$ $5-75^{\circ}$ 2 2 7.67% 8.09% 5.21% 5.25%	SLG SLG:0.02Bi ³⁺ SLG:0.04Bi ³⁺ tetragonal tetragonal tetragonal P421m P421m P421m 8.056660 8.056698 8.056033 5.333886 5.333712 5.332926 346.221 346.213 346.105 5-75° 5-75° 5-75° 2 2 2 7.67% 8.09% 10.25% 5.21% 5.25% 6.50	SLGSLG: $0.02Bi^{3+}$ SLG: $0.04Bi^{3+}$ SLG: $0.06Bi^{3+}$ tetragonaltetragonaltetragonaltetragonalP421mP421mP421mP421m8.0566608.0566988.0560338.0556275.3338865.3337125.3329265.332333346.221346.213346.105346.0325-75°5-75°5-75°5-75°22227.67%8.09%10.25%10.79%5.21%5.25%6.506.46%	SLGSLG: $0.02Bi^{3+}$ SLG: $0.04Bi^{3+}$ SLG: $0.06Bi^{3+}$ SLG: $0.08Bi^{3+}$ tetragonaltetragonaltetragonaltetragonalP421mP421mP421mP421m8.0566608.0566988.0560338.0556275.3338865.3337125.3329265.332333346.221346.213346.105346.0325-75°5-75°5-75°5-75°22227.67%8.09%10.25%10.79%5.21%5.25%6.506.46%6.83%

Table S1. Rietveld refinement of SrLaGa₃O₇: xBi^{3+} (x = 0-0.10)

 Table S2. LED lighting parameters of WLED3

Formula	CIE	CCT (K)	Ra
SLG:0.06Bi ³⁺ ,0.07Eu ³⁺	(0.3199, 0.3083)	6200	82

Figure S1. XRD patterns of SLG: xBi^{3+} , yEu^{3+} (x = 0/0.06, y = 0-0.20) phosphors.

Figure S2. Excitation line of BaSO₄ and emission spectrum of SLG:0.06Bi³⁺,0.07Eu³⁺ (a) and SLG:0.07Eu³⁺ (b) phosphor collected by using an integrating sphere.

Figure S3. Temperature-dependent normalized fluorescence spectra of $SLG:0.06Bi^{3+}$ (a) and $SLG:0.07Eu^{3+}$ (b) phosphors.

Figure S4. Temperature-dependent CIE chromaticity coordinates of phosphors $SLG:0.06Bi^{3+}$ ($\lambda_{ex} = 332$ nm), $SLG:0.07Eu^{3+}$ ($\lambda_{ex} = 395$ nm), and $SLG:0.06Bi^{3+}, 0.07Eu^{3+}$ ($\lambda_{ex} = 332$ nm).

Figure S5. (a) Illustration of the irradiance measurement device of the luminous flux tester; (b) The luminous flux variation curve of WLED3 (320 nm UV chip + $SLG:0.06Bi^{3+}, 0.07Eu^{3+}$ sample) under different input currents.