Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Hexadentate Technetium-99m Bis(thiosemicarbazonato) Complexes: Synthesis, Characterisation and Biodistribution

Supplementary Information

Cormac A. A. Kelderman,^a Patrick R. W. J. Davey,^a Michelle T. Ma,^b Michael de Veer,^c Ekaterina Salimova,^c Paul S. Donnelly,^d and Brett M. Paterson^{*a.c,e}

^a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

^b School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom

^c Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia

^d School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia

^e Current address: Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia

*Corresponding Author: brett.paterson@uq.edu.au

Table of Contents

NMR Data	5
Figure S1 The ¹ H NMR spectrum of 2a in CDCl ₃	5
Figure S2 The ¹³ C{ ¹ H} NMR spectrum of 2a in CDCl ₃	6
Figure S3 The ¹ H- ¹³ C HMBC NMR spectrum of 2a in CDCl ₃	6
Figure S4 The ¹ H- ¹³ C HSQC NMR spectrum of 2a in CDCl ₃	7
Figure S5 The ¹ H- ¹ H COSY NMR spectrum of 2a in CDCl ₃	7
Figure S6 The ¹ H NMR spectrum of 2b in CDCl ₃	8
Figure S7 The ¹³ C{ ¹ H} NMR spectrum of 2b in CDCl ₃	9
Figure S8 The ¹ H- ¹³ C HMBC NMR spectrum of 2b in CDCl ₃	9
Figure S9 The ¹ H- ¹³ C HSQC NMR spectrum of 2b in CDCl ₃ .	9
Figure S10 The ¹ H- ¹ H COSY NMR spectrum of 2b in CDCl ₃ .	10
Figure S11 The ¹ H NMR spectrum of 2c in CDCl ₃	10
Figure S12 The ${}^{13}C{}^{1}H$ NMR spectrum of 2c in CDCl ₃	11
Figure S13 The ¹ H- ¹³ C HMBC NMR spectrum of 2c in CDCl ₃	11
Figure S14 The ¹ H- ¹³ C HSQC NMR spectrum of 2c in CDCl ₃	12
Figure S15 The ¹ H- ¹ H COSY NMR spectrum of 2c in CDCl ₃	12
Figure S16 The ¹ H NMR spectrum of 2d in CDCl ₃	13
Figure S17 The ${}^{13}C{}^{1}H$ NMR spectrum of 2d in CDCl ₃ .	13
Figure S18 The ¹ H- ¹³ C HMBC NMR spectrum of 2d in CDCl ₃ .	14
Figure S19 The ¹ H- ¹³ C HSQC NMR spectrum of 2d in CDCl ₃ .	14
Figure S20 The ¹ H- ¹ H COSY NMR spectrum of 2d in CDCl ₃ .	15
Figure S21 The ¹ H NMR spectrum of 2e in CDCl ₃	15
Figure S22 The ${}^{13}C{}^{1}H$ NMR spectrum of 2e in CDCl ₃	16
Figure S23 The ¹ H- ¹³ C HMBC NMR spectrum of 2e in CDCl ₃	16
Figure S24 The ¹ H- ¹³ C HSQC NMR spectrum of 2e in CDCl ₃	17
Figure S25 The ¹ H- ¹ H COSY NMR spectrum of 2e in CDCl ₃	17
Figure S26 The ¹ H NMR spectrum of 3a in CDCl ₃	18
Figure S27 The ${}^{13}C{}^{1}H$ NMR spectrum of 3a in CDCl ₃	18
Figure S28 The ¹ H- ¹³ C HMBC NMR spectrum of 3a in CDCl ₃ .	19
Figure S29 The ¹ H- ¹³ C HSQC NMR spectrum of 3a in CDCl ₃	19
Figure S30 The ¹ H- ¹ H COSY NMR spectrum of 3a in CDCl ₃	20
Figure S31 The ¹ H NMR spectrum of 3b in CDCl ₃	21
Figure S32 The ${}^{13}C{}^{1}H$ NMR spectrum of 3b in CDCl ₃ .	21
Figure S33 The ¹ H- ¹³ C HMBC NMR spectrum of 3b in CDCl ₃ .	22
Figure S34 The ¹ H- ¹³ C HSQC NMR spectrum of 3b in CDCl ₃ .	22
Figure S35 The ¹ H- ¹ H COSY NMR spectrum of 3b in CDCl ₃ .	23
Figure S36 The ¹ H NMR spectrum of 3c in CDCl ₃ .	23
Figure S37 The ${}^{13}C{}^{1}H$ NMR spectrum of 3c in CDCl ₃	24
Figure S38 The ¹ H- ¹³ C HMBC NMR spectrum of 3c in CDCl ₃	24
Figure S39 The ¹ H- ¹³ C HSQC NMR spectrum of 3c in CDCl ₃	25
Figure S40 The ¹ H- ¹ H COSY NMR spectrum of 3c in CDCl ₃	25
Figure S41 The ¹ H NMR spectrum of 3d in CDCl ₃	26

Figure	S42	The ${}^{13}C{}^{1}H$ NMR spectrum of 3d in CDCl ₃ .	.26
Figure	S43	The ¹ H- ¹³ C HMBC NMR spectrum of 3d in CDCl ₃ .	.27
Figure	S44	The ¹ H- ¹³ C HSQC NMR spectrum of 3d in CDCl ₃ .	.27
Figure	S45	The ¹ H- ¹ H COSY NMR spectrum of 3d in CDCl ₃ .	.28
Figure	S46	The ¹ H NMR spectrum of 3e in CDCl ₃	.28
Figure	S47	The ${}^{13}C{}^{1}H$ NMR spectrum of 3e in CDCl ₃	.29
Figure	S48	The ¹ H- ¹³ C HMBC NMR spectrum of 3e in CDCl ₃	.29
Figure	S49	The ¹ H- ¹³ C HSQC NMR spectrum of 3e in CDCl ₃	.30
Figure	S50	The ¹ H- ¹ H COSY NMR spectrum of 3e in CDCl ₃	.30
Figure	S51	The ¹ H NMR spectrum of $H_4L^{H.2}HCl$ in d_6 -DMSO	.31
Figure	S52	The ${}^{13}C\{{}^{1}H\}$ NMR spectrum of $H_4L^{H}\cdot 2HCl$ in $d_6\text{-}DMSO$.31
Figure	S53	The ¹ H- ¹³ C HMBC NMR spectrum of H_4L^{H} ·2HCl in d ₆ -DMSO	.32
Figure	S54	The ¹ H- ¹³ C HSQC NMR spectrum of H ₄ L ^H ·2HCl in d ₆ -DMSO	.32
Figure	S55	The ¹ H- ¹ H COSY NMR spectrum of H_4L^{H} ·2HCl in d ₆ -DMSO	.33
Figure	S56	The ¹ H NMR spectrum of H_4L^{Me} in d ₆ -DMSO	.33
Figure	S57	The ¹³ C{ ¹ H} NMR spectrum of H_4L^{Me} in d ₆ -DMSO	.34
Figure	S58	The ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of H_4L^{Me} in d_6 -DMSO.	.34
Figure	S59	The ¹ H- ¹³ C HSQC NMR spectrum of H ₄ L ^{Me} in d ₆ -DMSO.	.35
Figure	S60	The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY NMR spectrum of H_4L^{Me} in d_6 -DMSO	.35
Figure	S61	The ¹ H NMR spectrum of $H_4L^{Pr} \cdot 2HCl$ in d_6 -DMSO	.36
Figure	S62	The ${}^{13}C\{{}^{1}H\}$ NMR spectrum of $H_4L^{Pr}\cdot 2HCl$ in d_6-DMSO	.36
Figure	S63	The ¹ H- ¹³ C HMBC NMR spectrum of H_4L^{Pr} ·2HCl in d ₆ -DMSO	.37
Figure	S64	The ¹ H- ¹³ C HSQC NMR spectrum of H_4L^{Pr} ·2HCl in d ₆ -DMSO.	.37
Figure	S65	The ¹ H- ¹ H COSY NMR spectrum of H_4L^{Pr} ·2HCl in d ₆ -DMSO.	.38
Figure	S66	The ¹ H NMR spectrum of H_4L^{Bu} 2HCl in d_6 -DMSO.	.38
Figure	S67	The ¹³ C{ ¹ H} NMR spectrum of H ₄ L ^{Bu} ·2HCl in d ₆ -DMSO.	.39
Figure	S68	The ¹ H- ¹³ C HMBC NMR spectrum of H ₄ L ^{Bu} ·2HCl in d ₆ -DMSO	.39
Figure	S69	The ¹ H- ¹³ C HSQC NMR spectrum of H ₄ L ^{Bu} ·2HCl in d ₆ -DMSO	.40
Figure	S70	The ¹ H- ¹ H COSY NMR spectrum of H_4L^{Bu} ·2HCl in d ₆ -DMSO	.40
Figure	S71	The ¹ H NMR spectrum of H_4L^{Hx} . 2HCl in d ₆ -DMSO.	.41
Figure	S72	The ¹³ C{ ¹ H} NMR spectrum of H_4L^{Hx} ·2HCl in d ₆ -DMSO	.41
Figure	S73	The ¹ H- ¹³ C HMBC NMR spectrum of H_4L^{Hx} ·2HCl in d_6 -DMSO	.42
Figure	S74	The $^{1}H^{-13}C$ HSQC NMR spectrum of H_4L^{Hx} 2HCl in d_6 -DMSO	.42
Figure	S75	The ¹ H- ¹ H COSY NMR spectrum of H_4L^{Hx} ·2HCl in d ₆ -DMSO	.43
Figure	S76	The ¹ H NMR spectrum of $H_4L^{EtOMe.}$ 2HCl in d_6 -DMSO	.43
Figure	S77	The ¹³ C{ ¹ H} NMR spectrum of H ₄ L ^{EtOMe.} 2HCl in d ₆ -DMSO	.44
Figure	S78	The ¹ H- ¹ H COSY NMR spectrum of $H_4L^{EtOMe.}$ 2HCl in d_6 -DMSO	.44
Figure	S79	The ¹ H- ¹³ C HSQC NMR spectrum of $H_4L^{EtOMe.}$ 2HCl in d_6 -DMSO	.45
Figure	S80	The ¹ H- ¹ H COSY NMR spectrum of $H_4L^{EtOMe.}$ 2HCl in d ₆ -DMSO	.45
Figure	S81	The ¹ H NMR spectrum of $H_4L^{PrOMe.}$ 2HCl in d_6 -DMSO	.46
Figure	S82	The ¹³ C{ ¹ H} NMR spectrum of H_4L^{PrOMe} ·2HCl in d ₆ -DMSO	.46
Figure	S83	The ¹ H- ¹³ C HMBC NMR spectrum of $H_4L^{PrOMe.}$ 2HCl in d ₆ -DMSO	.47
Figure	S84	The ¹ H- ¹³ C HSQC NMR spectrum of H ₄ L ^{PrOMe.} 2HCl in d ₆ -DMSO	.47
Figure	S85	The ¹ H- ¹ H COSY NMR spectrum of H ₄ L ^{PrOMe.} 2HCl in d ₆ -DMSO	.48

High Resolution Mass Spectrometry Data49
Figure S86 The high-resolution mass spectrum of 2a. $[2a + H]^+$: m/z = 150.0335249
Figure S87 The high-resolution mass spectrum of 2b . $[2b + H]^+$: m/z = 164.0528549
Figure S88 The high-resolution mass spectrum of 2c . $[2c + H]^+$: m/z = 192.0796349
Figure S89 The high-resolution mass spectrum of 2d. $[2d + H]^+$: m/z = 166.0354950
Figure S90 The high-resolution mass spectrum of 2e. $[2e + H]^+$: m/z = 180.0515450
Figure S91 The high-resolution mass spectrum of 3a. $[3a + H]^+$: $m/z = 134.0752950$
Figure S92 The high-resolution mass spectrum of 3b. $[3b + H]^+$: m/z = 148.0887251
Figure S93 The high-resolution mass spectrum of 3c. $[3c + H]^+$: m/z = 176.1224351
Figure S94 The high-resolution mass spectrum of 3d. $[3d - H]$: m/z = 148.053851
Figure S95 The high-resolution mass spectrum of 3e. $[3e - H]$: $m/z = 162.073352$
Figure S96 The high-resolution mass spectrum of $H_4L^{H} \cdot 2HCl$. $[H_4L^{H} + H]^+$: m/z =
389.22816
Figure S97 The high-resolution mass spectrum of H_4L^{Me} . $[H_4L^{Me} + H]^+$: m/z = 417.25879.52
Figure S98 The high-resolution mass spectrum of $H_4L^{Pr} \cdot 2HCl$. $[H_4L^{Pr} + H]^+$: m/z =
473.32235
Figure S99 The high-resolution mass spectrum of $H_4L^{Bu} \cdot 2HCl$. $[H_4L^{Bu} + H]^+$: m/z =
501.35371
Figure S100 The high-resolution mass spectrum of $H_4L^{Hx} \cdot 2HCl$. $[H_4L^{Hx} + H]^+$: m/z =
557.41715
Figure S101 The high-resolution mass spectrum of $H_4L^{EtOMe} \cdot 2HCl$. $[H_4L^{EtOMe} + H]^+$: m/z =
505.31136
Figure S102 The high-resolution mass spectrum of $H_4L^{PrOMe} \cdot 2HC1$. $[H_4L^{PrOMe} + H]^+$: m/z =
533.34399
Crystallography Data55
Table S1 Experimental, crystallographic and refinement details for $2H_4L^{Et} \cdot 4H_2O \cdot DMF$,
1 ·2HCl and 3d
Radio-LCMS Data
Figure S103 The extracted ion chromatogram from the radio-LCMS analysis of the
radiochemical reaction mixture containing both ^{99m} Tc and ⁹⁹ Tc (10 min at 40 °C)56
Radiochemistry Data
Figure S104 The RP-radioHPLC trace of the reaction mixture containing $[^{99m}Tc][TcO_4]^2$,
NaHCO ₃ , Na ₂ CO ₃ , MDP, SnCl ₂ and cysteine incubated at 37 °C for 20 min57
Figure S105 The iTLC trace of the radiochemical reaction mixture showing the presence of
insoluble Tc-Sn colloids at the baseline and soluble components at the solvent front
Figure S106 The SE-HPLC traces of $[99mTc][Tc(L^H)]^+$, $[99mTc][Tc(L^{Et})]^+$ and
$[^{99m}Tc][Tc(L^{Bu})]^+$ after incubation in human serum at 37 °C for 30 min compared to a UV
trace of human serum
DFT Structures and Data
Figure S107 Theoretically optimised structures of $[\text{Re}(\mathbf{L}^{\text{Et}})]^+$ using the PBE0 functional and
the LANL21Z and $6-31g^{**}$ basis sets
I able S2 The cartesian coordiantes and absolute energy of the theoretically optimised CID (LED)
structure of $[\text{Re}(L^{\text{ev}})]^{+}$ using the PBE0 functional and the LANL21Z and 6-31g** basis sets.

Figure S108 Theoretically optimised structures of $[ReO(H_2L^{Et})]^+$ using the PBE0 functional
and the LANL2TZ and 6-31g** basis sets
Table S3 The cartesian coordiantes and absolute energy of the theoretically optimisedstructure of $[ReO(H_2L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basissets.
Table S4 The cartesian coordiantes and absolute energy of the theoretically optimisedstructure of $[Tc(L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basis sets
Table S5 The cartesian coordiantes and absolute energy of the theoretically optimised structure of $[TcO(H_2L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basis
sets64
Kinetic Planar Imaging Data66
Figure S109 False colour images of the planar imaging scans at 4.5-5, 9.5-10, 14.5-15, 19.5-20, 24.5-25, and 28.5-29 min post-injection for the selected 99m Tc compounds on BALB/c mice (n =1)
Ex Vivo Biodistribution Data67
<i>Ex Vivo</i> Biodistribution Data
<i>Ex Vivo</i> Biodistribution Data
<i>Ex Vivo</i> Biodistribution Data

NMR Data

Figure S1 The ¹H NMR spectrum of 2a in CDCl₃.

Figure S7 The ¹³C{¹H} NMR spectrum of **2b** in CDCl₃.

Figure S21 The ¹H NMR spectrum of 2e in CDCl₃.

Figure S27 The ${}^{13}C{}^{1}H$ NMR spectrum of 3a in CDCl₃.

Figure S31 The ¹H NMR spectrum of 3b in CDCl₃.

U ppm NH₂ - 100 - 140 - 160 - 180 ppm i. Figure S34 The ¹H-¹³C HSQC NMR spectrum of 3b in CDCl₃. L ppm NH₂ - 10 -11 ppm

Figure S33 The ¹H-¹³C HMBC NMR spectrum of 3b in CDCl₃.

Figure S35 The ¹H-¹H COSY NMR spectrum of 3b in CDCl₃.

Figure S37 The ${}^{13}C{}^{1}H$ NMR spectrum of 3c in CDCl₃.

Figure S39 The ¹H-¹³C HSQC NMR spectrum of 3c in CDCl₃.

Figure S41 The ¹H NMR spectrum of 3d in CDCl₃.

Figure S43 The ¹H-¹³C HMBC NMR spectrum of 3d in CDCl₃.

Figure S45 The ¹H-¹H COSY NMR spectrum of 3d in CDCl₃.

Figure S47 The ¹³C{¹H} NMR spectrum of **3e** in CDCl₃.

Figure S49 The ¹H-¹³C HSQC NMR spectrum of 3e in CDCl₃.

Figure S51 The ¹H NMR spectrum of $H_4L^{H.}$ 2HCl in d₆-DMSO.

Figure S53 The $^{1}H^{-13}C$ HMBC NMR spectrum of $H_4L^{H.2}HCl$ in d₆-DMSO.

Figure S55 The ¹H-¹H COSY NMR spectrum of H₄L^H·2HCl in d₆-DMSO.

Figure S57 The ${}^{13}C{}^{1}H$ NMR spectrum of H_4L^{Me} in d₆-DMSO.

Figure S59 The ¹H-¹³C HSQC NMR spectrum of H₄L^{Me} in d₆-DMSO.

Figure S67 The $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of H₄L^{Bu}·2HCl in d₆-DMSO.

Figure S69 The 1 H- 13 C HSQC NMR spectrum of H₄L^{Bu}·2HCl in d₆-DMSO.

Figure S73 The ¹H-¹³C HMBC NMR spectrum of H₄L^{Hx}·2HCl in d₆-DMSO.

Figure S75 The ¹H-¹H COSY NMR spectrum of H₄L^{Hx}·2HCl in d₆-DMSO.

Figure S77 The ${}^{13}C{}^{1}H$ NMR spectrum of $H_4L^{EtOMe} \cdot 2HCl$ in d_6 -DMSO.

Figure S79 The ${}^{1}H{}^{-13}C$ HSQC NMR spectrum of H_4L^{EtOMe} . 2HCl in d₆-DMSO.

Figure S82 The ${}^{13}C{}^{1}H$ NMR spectrum of H_4L^{PrOMe} . 2HCl in d₆-DMSO.

Figure S83 The ¹H-¹³C HMBC NMR spectrum of H_4L^{PrOMe} ·2HCl in d₆-DMSO.

Figure S85 The $^{1}H^{-1}H$ COSY NMR spectrum of $H_{4}L^{PrOMe}$. 2HCl in d₆-DMSO.

High Resolution Mass Spectrometry Data

Figure S86 The high-resolution mass spectrum of 2a. $[2a + H]^+$: m/z = 150.03352.

Figure S89 The high-resolution mass spectrum of 2d. $[2d + H]^+$: m/z = 166.03549.

Figure S92 The high-resolution mass spectrum of 3b. $[3b + H]^+$: m/z = 148.08872.

Figure S93 The high-resolution mass spectrum of **3c**. $[3c + H]^+$: m/z = 176.12243.

Figure S94 The high-resolution mass spectrum of 3d. [3d - H]: m/z = 148.0538.

Figure S98 The high-resolution mass spectrum of $H_4L^{Pr} \cdot 2HC1$. $[H_4L^{Pr} + H]^+$: m/z = 473.32235.

Figure S99 The high-resolution mass spectrum of $H_4L^{Bu} \cdot 2HCl$. $[H_4L^{Bu} + H]^+$: m/z = 501.35371.

Figure S100 The high-resolution mass spectrum of $H_4L^{Hx} \cdot 2HCl. [H_4L^{Hx} + H]^+: m/z = 557.41715.$

Figure S101 The high-resolution mass spectrum of H_4L^{EtOMe} . 2HCl. $[H_4L^{EtOMe} + H]^+$: m/z = 505.31136.

Figure S102 The high-resolution mass spectrum of $H_4L^{PrOMe} \cdot 2HCl$. $[H_4L^{PrOMe} + H]^+$: m/z = 533.34399.

Crystallography Data

Crystal identification	2H ₄ L ^{Et} ·4H ₂ O·DMF	1·2HCl	3d
Chemical formula	C ₄₁ H ₉₅ N ₁₇ O ₅ S ₄	$C_{13}H_{28}Cl_2N_2O_2$	C ₄ H ₁₁ N ₃ OS
Formula weight	1034.57	315.27	149.22
Crystal system	triclinic	Orthorhombic	Monoclinic
Space group	<i>P</i> -1	Fddd	P2 ₁ /n
Temperature (K)	122.99(10)	122.99(10)	123.00(10)
a (Å)	13.9656(4)	13.9584(3)	9.9054(3)
b (Å)	15.2212(4)	20.1197(4)	7.1107(2)
c (Å)	16.5693(4)	23.6121(4)	10.2511(4)
α (°)	97.556(2)	90	90
β (°)	111.701(2)	90	92.937(3)
γ (°)	110.673(2)	90	90
V (Å ³)	2919.42(14)	6631.2(2)	721.08(4)
Z	2	16	4
$D_c (g \cdot cm^{-3})$	1.177	1.263	1.374
Absorption coefficient (mm ⁻¹)	0.216	3.528	0.375
F(000)	1128	2720.0	320
Wavelength (Å)	0.71073 (MoKa)	1.54184 (CuKα)	0.71073 (MoKa)
θ range for data collection (°)	3.3620-31.4480	4.2690-76.3660	3.4700-31.1700
Total reflections collected	41859	9251	9274
Independent reflections (R _{int})	11457 ($R_{int} = 0.0394$)	$1735 (R_{int} = 0.0290)$	$2079 (R_{int} =$
			0.0347)
Final R indices (<i>I</i> >2σ(<i>I</i>))	$R_1 = 0.0498$	$R_1 = 0.0282$	$R_1 = 0.0325$
	$wR_2 = 0.1268$	$wR_2 = 0.0801$	$wR_2 = 0.0765$
R indices (all data)	$R_1 = 0.0627$	$R_1 = 0.0288$	$R_1 = 0.0402$
	$wR_2 = 0.1336$	$wR_2 = 0.0805$	$wR_2 = 0.0816$
Goodness-of-fit on F ² (S)	1.057	1.058	1.058
Δρ _{max} , Δρ _{min} (e·Å ⁻³)	0.963, -0.423	0.439, -0.277	0.327, -0.252
CSD no.	2144524	2121028	2121027

Table S1 Experimental, crystallographic and refinement details for $2H_4L^{Et} \cdot 4H_2O \cdot DMF$, $1 \cdot 2HCl$ and 3d.

Radio-LCMS Data

Figure S103 The extracted ion chromatogram from the radio-LCMS analysis of the radiochemical reaction mixture containing both ^{99m}Tc and ⁹⁹Tc (10 min at 40 °C).

Radiochemistry Data

Figure S104 The RP-radioHPLC trace of the reaction mixture containing [^{99m}Tc][TcO₄]⁻, NaHCO₃, Na₂CO₃, MDP, SnCl₂ and cysteine incubated at 37 °C for 20 min.

Figure S105 The iTLC trace of the radiochemical reaction mixture showing the presence of insoluble Tc-Sn colloids at the baseline and soluble components at the solvent front.

Figure S106 The SE-HPLC traces of [^{99m}Tc][Tc(L^H)]⁺, [^{99m}Tc][Tc(L^{Et})]⁺ and [^{99m}Tc][Tc(L^{Bu})]⁺ after incubation in human serum at 37 °C for 30 min compared to a UV trace of human serum.

DFT Structures and Data

Figure S107 Theoretically optimised structures of $[Re(L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and $6-31g^{**}$ basis sets.

using the PBE0 functional and the LANL2TZ and 6-31g** basis sets.				
Absolute Energy: -2057.439830 Hartree				
Atom	X	y	Z	
Re	-0.6857000	-0.0090000	-0.0060000	
S	0.2565000	0.4921000	-2.1150000	
S	0.1919000	-0.4908000	2.1252000	
Ν	-1.9890000	1.2426000	0.6486000	
N	0.4777000	-1.8013000	-0.2053000	
С	1.6278000	1.4869000	-1.5597000	
Ν	-1.8980000	-1.2869000	-0.7663000	
Ν	1.6552000	-2.0236000	0.4540000	
Ν	0.4027000	1.8269000	0.2078000	
Ν	1.6044000	2.0750000	-0.3991000	
С	0.0211000	-2.7075000	-1.0019000	
Ν	2.6433000	1.6566000	-2.4138000	
N	2.6003000	-1.5848000	2.5099000	
С	-2.3888000	3.6911000	0.8015000	
Н	-3.4342000	3.6097000	1.1066000	

Table S2 The cartesian coordiantes and absolute energy of the theoretically optimised structure of $[Re(L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basis sets.

Н	-2.3409000	3.7512000	-0.2897000
Н	-2.0039000	4.6245000	1.2180000
С	-1.5682000	2.4941000	1.3248000
С	-0.1330000	2.7460000	0.9360000
С	1.6155000	-1.4396000	1.6167000
С	-3.3215000	-0.9977000	-0.9041000
Н	-3.4874000	-0.3204000	-1.7553000
Н	-3.8744000	-1.9144000	-1.1250000
C	-1.4106000	-2.5095000	-1.4381000
C	3.7823000	-2.3949000	2.2566000
– – – – – – – – – – – – – – – – – – –	4.3909000	-1.9240000	1.4739000
	3.4491000	-3.3598000	1.8605000
<u> </u>	4.6362000	2.7029000	-3.3589000
	5 4967000	3 3346000	-3 1265000
H	4 0620000	3 1915000	-4 1514000
H	5 0216000	1 7524000	-3 7432000
C	0.8061000	_3 9243000	_1 3481000
н Н	1 8490000	_3 6530000	_1 5212000
II U	0.4047000	-3.0337000	-1.3212000
	0.4047000	-4.4282000	-2.2200000
		-4.0515000	-0.5105000
	-1./183000	2.3845000	2.0519000
	-2.7007000	2.2401000	3.1254000
	-1.3824000	3.3005000	3.3339000
H	-1.1534000	1.5540000	3.2520000
	4.5843000	-2.5747000	3.5314000
	5.4693000	-3.183/000	3.3331000
H	3.9947000	-3.0768000	4.3039000
H	4.9296000	-1.6131000	3.9262000
<u> </u>	-3.4369000	1.0442000	0.6283000
H	-3.8618000	1.6908000	-0.1538000
H	-3.8736000	1.3/38000	1.5789000
<u> </u>	0.5768000	4.0131000	1.2640000
H	1.6345000	3.8114000	1.4436000
H	0.1401000	4.5070000	2.1336000
H	0.5246000	4.7047000	0.4146000
C	-2.1770000	-3.7445000	-0.9110000
H	-3.2096000	-3.7526000	-1.2668000
H	-2.1766000	-3.7627000	0.1824000
H	-1.7115000	-4.6625000	-1.2765000
<u> </u>	3.7929000	2.4971000	-2.1150000
H	4.3853000	2.0408000	-1.3113000
H	3.4189000	3.4511000	-1.7295000
C	-3.8700000	-0.3874000	0.3772000
H	-3.5781000	-1.0227000	1.2222000
Н	-4.9647000	-0.3930000	0.3306000
C	-1.5578000	-2.4123000	-2.9639000
Н	-2.6124000	-2.3004000	-3.2303000
Н	-1.1930000	-3.3234000	-3.4457000
Н	-1.0026000	-1.5627000	-3.3666000
Н	2.6725000	1.0722000	-3.2343000
H	2.5750000	-1.0123000	3.3389000

Figure S108 Theoretically optimised structures of $[\text{ReO}(H_2 L^{\text{Et}})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basis sets.

Absolute Energy: -2133.764989 Hartree					
Atom	x	у	Z		
S	3.5653660	0.3807400	1.0003020		
S	-0.2192320	-0.7007500	2.0570700		
Ν	-1.5965490	1.8222980	0.6077940		
Ν	-0.3405780	-1.7479670	-0.4644000		
С	3.1135440	0.7782420	-0.5651380		
Ν	-2.5870960	-0.6524160	-0.5209010		
Ν	0.8279850	-2.2495230	0.1439550		
Ν	0.8527550	1.5224560	-0.0342600		
Ν	1.9577870	1.4300190	-0.8863330		
С	-1.2407660	-2.6122350	-0.8001950		
Ν	3.9019780	0.5057140	-1.6240370		
Ν	1.9196360	-2.2736150	2.1738500		
С	-1.0742970	4.2429760	0.6875970		
Н	-2.0661040	4.5106030	1.0572620		
Н	-1.0947900	4.2711200	-0.4058520		
Н	-0.3825980	5.0064920	1.0490610		
С	-0.6857800	2.8344030	1.1927880		
С	0.7148030	2.5892430	0.6734540		
С	0.9261580	-1.7923170	1.4489300		
С	-3.8501180	0.0686250	-0.4990400		
Н	-3.9484640	0.6921460	-1.4026500		
Н	-4.6991650	-0.6217780	-0.4987320		

Table S3 The cartesian coordiantes and absolute energy of the theoretically optimised structure of [ReO(H ₂ L ^{Et})]+
using the PBE0 functional and the LANL2TZ and 6-31g** basis sets.	

С	-2.6121970	-2.0269850	-1.0456620
С	2.9334100	-3.2205910	1.7245340
Н	3.6734180	-2.6846880	1.1147930
Н	2.4365970	-3.9632750	1.0912260
С	4.8993060	0.6160280	-3.8481320
H	4.7375990	0.9516460	-4.8746740
H	5.0708920	-0.4643030	-3.8702320
Н	5.8029390	1.1067660	-3.4740850
С	-0.9973880	-4.0781930	-0.8628370
Н	0.0614150	-4.3056940	-0.9764510
Н	-1.5618580	-4.5211670	-1.6870650
Н	-1.3499350	-4.5496250	0.0618900
С	-0.6926630	2.8049500	2.7306980
Н	-1.6988920	3.0027970	3.1084700
Н	-0.0355600	3.5769730	3.1415420
Н	-0.3635460	1.8337430	3.1055760
С	3.6041420	-3.8822400	2.9139610
H	4.3597670	-4.5897960	2.5653680
H	2.8810620	-4.4280920	3.5259520
Н	4.1117180	-3.1441020	3.5430070
С	-3.0149660	2.1432960	0.7529890
H	-3.3189480	2.8231990	-0.0587900
Н	-3.1858260	2.6817660	1.6934840
С	1.8208580	3.5615110	0.8889580
Н	2.7191850	3.0202830	1.2018010
Н	1.5683920	4.3063170	1.6428540
Н	2.0521870	4.0772200	-0.0498460
С	-3.6291680	-2.9259360	-0.3160200
Н	-4.6441600	-2.5634330	-0.4864650
Н	-3.4432690	-2.9321330	0.7619170
Н	-3.5993050	-3.9511390	-0.6924300
C	3.6956590	0.9630580	-2.9911710
Н	3.5254940	2.0485300	-2.9956770
Н	2.7969500	0.4879630	-3.4105270
С	-3.9419790	0.9389270	0.7478290
Н	-3.7476990	0.3124440	1.6269430
Н	-4.9662920	1.3191340	0.8364430
С	-2.8984990	-2.0006540	-2.5606950
Н	-3.9097320	-1.6198430	-2.7274420
Н	-2.8438760	-3.0002010	-3.0028940
Н	-2.1910830	-1.3393820	-3.0684160
Н	4.8158010	0.1574510	-1.3723280
Н	2.0668180	-1.8138590	3.0627330
Н	1.6635970	-2.0804430	-0.4127420
Н	1.5914000	1.3017750	-1.8277750
0	-0.6184040	0.6991350	-2.0014580
Re	-0.9126240	0.2946700	-0.3627780

Table S4 The cartesian coordiantes and absolute energy of the theoretically optimised structure of $[Tc(L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g^{**} basis sets.

Absolute Energy: -2058.379468 Hartree					
Atom x y z					
S	0.1712200	0.4026540	-2.1300990		
S	0.1195520	-0.4060410	2.1402500		
Ν	-2.0875220	1.2590600	0.6030550		
N	0.4055340	-1.8105670	-0.1365820		

С	1.5456720	1.3994480	-1.5981740
Ν	-1.9783420	-1.3330590	-0.7145250
Ν	1.5931130	-1.9755970	0.5124210
N	0.3078570	1.8370160	0.1353460
Ν	1.5153700	2.0432170	-0.4655980
С	-0.0513370	-2.7538110	-0.8848310
N	2.5775280	1.5168030	-2.4418730
N	2.5622270	-1.4139880	2.5265100
С	-2.5076950	3.7032010	0.6550330
H	-3.5481320	3.6279190	0.9780150
 H	-2.4734330	3.7161510	-0.4382140
H	-2.1233070	4.6560290	1.0254450
<u> </u>	-1.6688880	2.5372660	1.2196000
C	-0.2363830	2.7848380	0.8143840
C C	1 5568490	-1 3360790	1 6476490
C	-3 3912860	-1 0293030	-0.8859100
<u> </u>	-3 5323160	-0 3576620	-1 7465310
H	-3.9506380	-1 9416480	-1.1108750
	-3.7300300	_7 5768460	_1 3704880
	3 7577100	_2.3700400	-1.3274000 2 20151/0
	J. 13//190 A 2424020	-2.2074100	<i>2.2713140</i> 1 <i>47664</i> 20
	4.3424730	-1./033090	1.4/00430 1.0/70000
	J.440J210 4 5022470	-3.1774130	1.74/0000 2 /070010
	4.37334/U	2.470/2/0	-3.40/0810
	J.430040U	3.1329000	-3.192/040
H	4.0350930	2.9540/80	-4.2302810
H	4.9745660	1.52/3230	-3./399240
	0.7321150	-3.9872110	-1.1/61430
H	1.7784270	-3.7274790	-1.3501610
H	0.3373150	-4.5234260	-2.040/860
H	0.7128590	-4.6624360	-0.3125840
<u> </u>	-1.8055970	2.4905470	2.7524460
H	-2.8502510	2.3505620	3.0420190
H	-1.4720690	3.4351000	3.1901270
H	-1.2093950	1.6828390	3.1812560
C	4.5847200	-2.3097210	3.5590860
H	5.4801630	-2.9076120	3.3745280
H	4.0196680	-2.7872610	4.3649400
H	4.9139580	-1.3227960	3.9015050
C	-3.5282830	1.0375310	0.6131010
H	-3.9706840	1.6685770	-0.1730620
H	-3.9576220	1.3770390	1.5641560
С	0.4601130	4.0746590	1.0823860
H	1.5233360	3.8945790	1.2510800
H	0.0317300	4.5943950	1.9413200
Н	0.3814410	4.7345550	0.2101510
С	-2.2556410	-3.7848040	-0.7481400
Н	-3.2913720	-3.7984380	-1.0943100
Н	-2.2448000	-3.7612050	0.3449980
Н	-1.7976050	-4.7183060	-1.0827170
С	3.7305390	2.3605410	-2.1672020
Н	4.3072230	1.9379880	-1.3341230
Н	3.3606490	3.3354420	-1.8332420
С	-3.9538720	-0.4003960	0.3818020
Н	-3.6665580	-1.0221500	1.2380490
Н	-5.0481770	-0.4095460	0.3270500
С	-1.6269980	-2.5484500	-2.8594790
Н	-2.6803650	-2.4505490	-3.1358870
Н	-1.2584640	-3.4802040	-3.2966150

Н	-1.0699330	-1.7176030	-3.2971220
Н	2.6103540	0.8961570	-3.2351200
Н	2.5363490	-0.8043460	3.3285030
Тс	-0.7843650	-0.0157320	-0.0023340

Table S5 The cartesian coordiantes and absolute energy of the theoretically optimised structure of $[TcO(H_2L^{Et})]^+$ using the PBE0 functional and the LANL2TZ and 6-31g** basis sets.

Absolute Energy: -2134.693481 Hartree					
Atom	x	У	z z		
S	3.5414910	0.8325560	1.0760100		
S	-0.2207670	-0.4612230	2.0457130		
Ν	-1.7120590	1.9245510	0.3539070		
Ν	-0.5640970	-1.8186390	-0.3129220		
С	3.0663640	0.7270850	-0.5287670		
Ν	-2.7930540	-0.6503950	-0.3992030		
Ν	0.6292890	-2.2654560	0.2740620		
Ν	0.7439510	1.4787710	-0.2733440		
Ν	1.8701620	1.1588810	-1.0225940		
С	-1.5070150	-2.6787470	-0.4863780		
Ν	3.8862950	0.2051290	-1.4714380		
Ν	1.9983030	-1.9254030	2.0947280		
С	-1.1821800	4.3114010	0.0274920		
Н	-2.1634760	4.6310090	0.3824080		
Н	-1.2354000	4.1701650	-1.0560440		
Н	-0.4889660	5.1257240	0.2437700		
С	-0.7656730	2.9996320	0.7303570		
С	0.6225980	2.6575850	0.2263940		
С	0.8855390	-1.6026010	1.4559080		
С	-4.0373140	0.0959270	-0.4079780		
Н	-4.1673140	0.6102160	-1.3750230		
Н	-4.8972430	-0.5689650	-0.2862000		
С	-2.8613040	-2.0697210	-0.7823650		
С	2.9994760	-2.8766910	1.6317840		
Н	3.5346880	-2.4500920	0.7709980		
Н	2.4789590	-3.7831700	1.3021900		
С	4.9447930	-0.1880330	-3.6347890		
Н	4.7974840	-0.1331660	-4.7154830		
Н	5.1734690	-1.2265100	-3.3774140		
Н	5.8099030	0.4330190	-3.3834250		
С	-1.3283180	-4.1494620	-0.3471130		
Н	-0.2785580	-4.4354000	-0.3884950		
Н	-1.8833110	-4.6741110	-1.1293160		
Н	-1.7357450	-4.4794730	0.6151910		
С	-0.6985240	3.2053870	2.2547930		
Н	-1.6789940	3.4860190	2.6475380		
Н	-0.0039200	4.0113170	2.5091450		
Н	-0.3683850	2.2916870	2.7541250		
С	3.9813270	-3.1911690	2.7445010		
Н	4.7222550	-3.9128830	2.3936680		
Н	3.4715390	-3.6194320	3.6116770		
Н	4.5174590	-2.2897200	3.0568780		
С	-3.1141730	2.2862050	0.5260070		
Н	-3.4528860	2.8547000	-0.3554730		
Н	-3.2300310	2.9508780	1.3911850		
С	1.7374180	3.6405450	0.2705220		
Н	2.5291440	3.2423910	0.9161590		

Н	1.4257590	4.6158660	0.6379260
Н	2.1715470	3.7512210	-0.7290360
С	-3.9154110	-2.8552840	0.0200010
Н	-4.9188270	-2.4951580	-0.2113260
Н	-3.7499770	-2.7501070	1.0961730
Н	-3.9026300	-3.9155190	-0.2423640
С	3.6997930	0.2948690	-2.9131660
Н	3.4741250	1.3324690	-3.1968520
Н	2.8405350	-0.3207990	-3.2176570
С	-4.0547160	1.1112720	0.7256540
Н	-3.8205000	0.5951480	1.6645280
Н	-5.0680370	1.5186280	0.8180470
С	-3.1422990	-2.1808670	-2.2960710
Н	-4.1430770	-1.7925540	-2.5040300
Н	-3.1113930	-3.2198010	-2.6387920
Н	-2.4156860	-1.5899530	-2.8602750
Н	4.8214630	0.0324840	-1.1307810
Н	2.2603230	-1.2946560	2.8409050
Н	1.4053700	-2.3364390	-0.3777240
Н	1.5560880	0.7919330	-1.9165230
0	-0.8294230	0.4434050	-2.0869230
Te	-1.0968780	0.2646140	-0.4143150

Kinetic Planar Imaging Data

Signal Intensity

Figure S109 False colour images of the planar imaging scans at 4.5-5, 9.5-10, 14.5-15, 19.5-20, 24.5-25, and 28.5-29 min post-injection for the selected ^{99m}Tc compounds on BALB/c mice (n =1).

Ex Vivo Biodistribution Data

Table S6 The organ biodistribution of the three ^{99m} Tc bis(thiosemicarbazonato) compounds and [^{99m} Tc][TcO ₄] ⁻ .
Data are percentage injected dose per gram (% ID/g), expressed as mean ± standard error of the mean in
BALB/c mice $(n = 5-7)$ with euthanasia and dissection 15 min post-injection.

	[^{99m} Tc][TcO ₄] ⁻	[^{99m} Tc][Tc(L ^H)] ⁺	[^{99m} Tc][Tc(L ^{Et})] ⁺	[^{99m} Tc][Tc(L ^{Bu})] ⁺
blood	11.72 ± 0.25	9.49 ± 0.37	6.23 ± 0.14	5.56 ± 0.37
urine	56.63 ± 11.78	141.02 ± 27.92	69.11 ± 18.16	13.58 ± 3.35
bladder	6.24 ± 0.65	3.30 ± 0.95	2.14 ± 0.14	2.16 ± 0.24
heart	3.59 ± 0.29	3.93 ± 0.17	2.33 ± 0.20	2.65 ± 0.28
brain	0.31 ± 0.04	0.44 ± 0.09	0.44 ± 0.08	0.52 ± 0.02
thyroid	61.19 ± 6.09	8.30 ± 1.62	7.47 ± 1.13	5.72 ± 0.95
liver	7.71 ± 0.21	10.06 ± 1.79	9.51 ± 1.25	17.39 ± 1.33
kidneys	5.86 ± 0.19	16.83 ± 2.86	8.91 ± 1.40	7.03 ± 0.47
spleen	3.74 ± 0.14	3.35 ± 0.62	2.17 ± 0.25	4.26 ± 0.41
stomach	72.21 ± 10.16	6.59 ± 1.78	7.80 ± 1.38	8.35 ± 3.09
large intestine	3.60 ± 0.26	1.97 ± 0.55	1.58 ± 0.22	1.68 ± 0.13
small intestine	2.71 ± 0.11	33.20 ± 7.67	31.64 ± 7.50	54.79 ± 5.75
lungs	7.65 ± 0.29	4.94 ± 0.91	3.88 ± 0.13	4.19 ± 0.44
muscle	1.42 ± 0.06	0.88 ± 0.14	0.81 ± 0.10	0.70 ± 0.07
bone (femur)	2.98 ± 0.04	1.24 ± 0.21	0.97 ± 0.11	0.91 ± 0.08