Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Support Information

Achieving ultrahigh energy storage density and efficiency in 0.90NaNbO₃-

0.10BaTiO₃ ceramic via a composition modification strategy

Hua Wang^{1, 2}, Enzhu Li^{1, 2*}, Mengjiang Xing³, Chaowei Zhong^{1, 2}

¹ National Engineering Research Center of Electromagnetic Radiation Control

Materials, University of Electronic Science and Technology of China, Chengdu,

610054, China

² Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of

Education, University of Electronic Science and Technology of China, Chengdu,

610054, China

³ Yangtze Delta Region Institute (Huzhou), University of Electronic Science and

Technology of China, Huzhou, 313001, China

^{*} Corresponding authors: E-mail addresses: lienzhu@uestc.edu.cn

x	lattice parameters/(Å)	<i>R</i> _p /%	R _{wp} /%	χ^2
0	$\alpha = \beta = \gamma = 90^{\circ}$ a = b = 3.931356 c = 3.932283 V = 60.778	3.05	3.89	2.029
0.05	$\alpha = \beta = \gamma = 90^{\circ}$ a = b = 3.933834 c = 3.933572 V = 60.872	3.60	4.82	2.764
0.10	$\alpha = \beta = \gamma = 90^{\circ}$ a = b = 3.938624 c = 3.937000 V = 61.074	3.91	5.48	3.202
0.15	$\alpha = \beta = \gamma = 90^{\circ}$ a = b = 3.945789 c = 3.945971 V = 61.436	3.49	4.65	2.159
0.20	$\alpha = \beta = \gamma = 90^{\circ}$ a = b = 3.951609 c = 3.952425 V = 61.718	3.55	4.95	2.330

Table S2 Compar	rison of the energy	storage properties	of NNBT-0.10BLMT	ceramics with
-----------------	---------------------	--------------------	------------------	---------------

Materials	BDS(kV/cm)	$W_{\rm rec}({\rm J/cm^3})$	η(%)	Ref.
$0.97K_{0.5}Na_{0.5}NbO_{3}\text{-}0.03La(Mn_{0.5}Ni_{0.5})O_{3}$	190	1.65	76	1
$0.45Bi_{0.5}Na_{0.5}TiO_3\text{-}0.55Sr_{0\cdot7}Bi_{0\cdot2}TiO_3$	100	1.34	96	2
$0.90NaNbO_{3}-0.10Bi(Zn_{0.5}Sn_{0.5})O_{3}$	350	3.14	83	3
$0.95[(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3]\text{-}0.05AgNbO_3$	105	1.27	78	4
0.9(0.7BiFeO ₃ -0.3BaTiO ₃)-0.1Nb	150	2.01	68	5
$0.9(k_{0.5}Na_{0.5})NbO_3\text{-}0.1Bi(Zn_{2/3}Nb_{1/3})O_3$	200	0.97	-	6
0.50NaNbO ₃ -0.50NaTaO ₃	300	2.2	80	7
$0.80Bi_{0.5}Na_{0.5}TiO_3\hbox{-}0.20SrTi_{0.5}Zr_{0.5}O_3$	150	1.85	66	8
$0.85BaTiO_{3}\text{-}0.15Bi(Ni_{1/2}Ti_{1/2})O_{3}$	170	1.46	91	9
$0.85K_{0.5}Na_{0.5}NbO_{3}\text{-}0.15Bi(Ni_{0.5}Ti_{0.5})O_{3}$	280	2.61	83	10
$0.92Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3 \text{ -} 0.08Bi(Mg_{2/3}Nb_{1/3})O_3$	110	2.20	55.7	11
NNBT-0.10BLMT	400	2.68	90	This work

other recently reported energy storage ceramics

Fig S1. Temperature dependent the dielectric constant and dielectric loss of the materials: (a) x = 0.05, (b) x = 0.10, (c) x = 0.15 and (d) x = 0.20.

Fig S2. The energy band path of the tetragonal phase: Γ -X-M- Γ -Z-R-A-Z|X-R|M-A.

Fig S3. The cycle stability C_D , P_D , and I_{max} for NNBT-0.10BLMT ceramic at 80 kV/cm.

References

- 1 Z. Peng, Q. Shi, F. Zhang, J. Liu, X. Nie, J. Wang, S. Xu, D. Wu, Z. Yang and X. Chao, J. Mater. Sci., 2022.
- 2 X. Zhou, K. Liu, Z. Yan, B. Xie, P. Fan, S. Chen, C. Samart, D. Salamon, H. Tan, Z. Fan and H. Zhang, *Ceram. Int.*, 2022.
- 3 D. Xiaoyan, L. Xu, H. Chen, D. Qinpeng, J. Wang, X. Wang, Y. Pan, X. Chen and Z. Huanfu, *Journal of Advanced Ceramics*, 2022, **11**, 729-741.
- 4 S. Zheng, Q. Li, Y. Chen, A. K. Yadav, W. Wang and H. Fan, J. Alloy. Compd., 2022, 911, 165019.
- 5 Z. Yang, B. Wang, Y. Li and D. A. Hall, Materials, 2022, 15.
- 6 W. Chen, M. Cao, H. Wang, H. Hao, Z. Yao and H. Liu, *Journal of Materials Science: Materials in Electronics*, 2022, **33**, 10121-10130.
- 7 Z. Chen, S. Mao, L. Ma, G. Luo, Q. Feng, Z. Cen, F. Toyohisa, X. Peng, L. Liu, H. Zhou, C. Hu and N. Luo, *Journal of Materiomics*, 2022.
- 8 F. Zhang, Z. Dai, Y. Pan, G. Chen, J. Liu, W. Liu and T. Karaki, Int. J. Energ. Res., 2022, n/a.
- 9 X. Huang, S. Li, C. Wang, H. Long, P. Chen, F. Xiao and Y. Chen, *Journal of Materials Science: Materials in Electronics*, 2022, **33**, 10042-10056.
- 10 X. Gan, H. Yang, Y. Lin and J. Li, Ceram. Int., 2022, 48, 14920-14927.
- 11 Z. Peng, J. Wang, M. Niu, X. Nie, S. Xu, F. Zhang, J. Wang, D. Wu, Z. Yang and X. Chao, *Journal of Materials Science: Materials in Electronics*, 2022, **33**, 3053-3064.