Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

A New Bis(thioether)-Dipyrrin N₂S₂ Ligand and Its Coordination Behaviors to Nickel, Copper and Zinc

Tengdie Wu,† Shen Wang,† Yongxing Lv, Tianyue Fu, Jinhai Jiang, Xin Lu, Zhipeng Yu, Jie Zhang, Lianke Wang,* and Hongping Zhou*

Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China [†] These authors contributed equally to this work.

E-mail address: wanglianke2009@163.com, zhpzhp@263.net

Scheme S1. Synthesis of ligand **6DFH**.

Figure S1. ¹H NMR spectrum of ligand **6DFH** in d-acetone at 25 °C.

Figure S2. ¹³C NMR spectrum of ligand **6DFH** in d-acetone at 25 °C.

Figure S3. ¹⁹F NMR spectrum of ligand **6DFH** in d-acetone at 25 °C.

Figure S4. ESI-MS of ligand **6DFH** in methanol.

Figure S5. X-ray crystal structure of **6DFH** in the asymmetric unit shown at the 30% ellipsoid probability. All hydrogen atoms are omitted for clarity. The two units were distinguished by blue and green color.

Figure S6. ¹H NMR spectra of complex **(6DFNiCl)**₂ in CDCl₃ at 25 °C.

Figure S7. Infrared spectrum of complex $(6DFNiCl)_2$ in solid state based on KBr.

Figure S8. ESI-MS of complex **(6DFNiCl)**₂ in CH₂Cl₂. Peak attribution (m/z): 685.27: 6DFNi (C₃₃H₂₅N₂S₂F₆Ni).

Figure S9. ¹H NMR spectra of complex **6DFCuCl** in CDCl₃ at 25 °C.

Figure S10. ¹⁹F NMR spectra of ligand **6DFCuCl** in d-acetone at 25 °C.

Figure S11. X-ray crystal structure of **6DFCuCl** in the asymmetric unit shown at the 30% ellipsoid probability. All hydrogen atoms are omitted for clarity. The two units were distinguished by blue and green color.

Figure S12. Infrared spectrum of complex **6DFCuCl** in solid state based on KBr.

Figure S13. ESI-MS of complex **6DFCuCl** in CH₂Cl₂. Peak attribution (m/z): 690.17: 6DFCu ($C_{33}H_{25}N_2S_2F_6Cu$).

Figure S14. ¹H NMR spectra of complex **(6DF)**₂**Zn** in CDCl₃ at 25 °C.

Figure S15. ¹³C NMR spectra of complex **(6DF)**₂**Zn** in CDCl₃ at 25 °C.

Figure S16. Infrared spectrum of complex (6DF)₂Zn in solid state based on KBr.

Figure S17. APCI-MS of (**6DF**)₂Zn in CH₂Cl₂. Peak attribution (*m*/*z*): 629.31: 6DFH+H (C₃₃H₂₆N₂S₂F₆); 691.21: 6DFZn (C₃₃H₂₅N₂S₂F₆Zn).

Identification code	6DFH	(6DFNiCl) ₂	6DFCuCl	(6DF) ₂ Zn
Empirical formula	$C_{33}H_{26}F_6N_2S_2$	$C_{66}H_{50}Cl_2F_{12}N_4Ni_2S_4\\$	$C_{33}H_{25}ClCuF_6N_2S_2$	$C_{66}H_{50}F_{12}N_4S_4Zn$
Formula weight	628.68	1443.66	726.66	1320.71
Temperature/K	296.15	296.15	296.15	296.15
Crystal system	monoclinic	triclinic	triclinic	orthorhombic
Space group	P2 ₁ /c	P-1	P-1	P2 ₁ 2 ₁ 2 ₁
a/Å	9.5425(14)	10.3025(17)	16.2289(19)	13.5949(13)
b/Å	22.706(3)	12.284(2)	16.6073(19)	17.6861(17)
c/Å	28.330(4)	14.517(2)	17.416(2)	28.194(3)
α/°	90	69.290(2)	69.500(2)	90
β/°	93.511(2)	70.236(2)	69.628(2)	90
γ/°	90	85.129(3)	62.269(2)	90
Volume/Å ³	6126.8(15)	1616.1(5)	3793.4(8)	6779.0(11)
Z	8	1	4	4
$\rho_{calc} g/cm^3$	1.363	1.483	1.272	1.294
μ/mm ⁻¹	0.236	0.873	0.808	0.559
F(000)	2592.0	736.0	1476.0	2704.0
Crystal size/mm ³	$0.32 \times 0.25 \times 0.18$	$0.18 \times 0.16 \times 0.08$	$0.31\times0.25\times0.12$	$0.22\times0.21\times0.1$
Radiation	ΜοΚα (λ =	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ =
	0.71073)			0.71073)
2Θ range for data collection/°	2.88 to 55.004	3.178 to 49.994	2.908 to 49.998	2.718 to 50
Index ranges	-12 ≤ h ≤ 12, -29 ≤	$-12 \leq h \leq 12, -14 \leq k \leq$	$-18 \le h \le 19, -19 \le k$	-16 ≤ h ≤ 12, -21 ≤
	k ≤ 27, -35 ≤ l ≤ 33	13, -17 ≤ l ≤ 16	≤ 19, -20 ≤ l ≤ 20	k ≤ 21, -33 ≤ l ≤ 33
Reflections collected	49056	11770	27615	49426
Independent reflections	13068	5658	13245	11937
	[Rint = 0.0611,	[Rint = 0.0529,	[Rint = 0.0331,	[Rint = 0.0710,
	Rsigma = 0.0587]	Rsigma = 0.0934]	Rsigma = 0.0536]	Rsigma = 0.0723]
Data/restraints/parameters	13068/293/903	5658/272/475	13245/726/967	11937/368/940
Goodness-of-fit on F ²	1.027	1.006	1.032	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0631$	$R_1 = 0.0545$	$R_1 = 0.0766$	R1 = 0.0527
	$wR_2 = 0.1596$	$wR_2 = 0.1150$	$wR_2 = 0.2147$	wR2 = 0.1135
Final R indexes [all data]	$R_1 = 0.1146$	$R_1 = 0.1081$	$R_1 = 0.1090$	R1 = 0.0895
	$wR_2 = 0.1915$	$wR_2 = 0.1385$	$wR_2 = 0.2412$	wR2 = 0.1302
Largest diff. peak/hole / e Å ⁻³ Flack parameter	1.11/-0.49	0.40/-0.37	2.45/-1.12	0.50/-0.24 0.007(9)

Table S1 Crystallographic data.

(6DF	NiCl) ₂		6DI	FCuCl		(6DF)	₂ Zn
Cl1 Ni1 Cl1 ^a	81.95(4)	Cl1	Cu1 S1	86.48(8)	N1	Zn1 N2	96.67(19)
Cl11Ni1 S1	92.89(5)	Cl1	Cu1 S2	100.53(8)	N1	Zn1 N3	111.4(2)
Cl1 Ni1 S1	89.59(5)	S1	Cu1 S2	87.80(7)	N1	Zn1 N4	115.7(2)
S2 Ni1 Cl1	168.27(5)	N1	Cu1 Cl1	143.95(16)	N2	Zn1 N3	118.3(2)
S2 Ni1 Cl1 ^a	86.53(5)	N1	Cu1 S1	93.41(14)	N2	Zn1 N4	118.1(2)
S2 Ni1 S1	93.23(5)	N1	Cu1 S2	115.49(15)	N3	Zn1 N4	97.83(19)
N1 Ni1 Cl1 ^a	173.69(11)	N2	Cu1 Cl1	92.64(15)			
N1 Ni1 Cl1	93.45(11)	N2	Cu1 S1	171.79(15)			
N1 Ni1 S1	82.73(11)	N2	Cu1 S2	84.34(15)			
N1 Ni1 S2	98.20(11)	N2	Cu1 N1	92.10(19)			
N2 Ni1 Cl1	94.61(11)	Cl2	Cu2 S3	85.89(7)			
N2 Ni1 Cl1 ^a	98.01(11)	Cl2	Cu2 S4	107.11(7)			
N2 Ni1 S1	168.77(11)	S3	Cu2 S4	96.58(6)			
N2 Ni1 S2	84.74(11)	N3	Cu2 Cl2	93.15(15)			
N2 Ni1 N1	86.62(15)	N3	Cu2 S3	178.83(15)			
^a 1-X,1-Y,1-Z		N3	Cu2 S4	83.06(15)			
		N3	Cu2 N4	90.7(2)			
		N4	Cu2 Cl2	142.87(16)			
		N4	Cu2 S3	90.52(14)			
		N4	Cu2 S4	110.02(15)			

Table S2. Selected bond lengths (Å) in the crystal structures of the Tetradentate N_2S_2 complexes.

Table S3. Selected bond lengths (Å) of dipyrrins units in the crystal structures.

Bonds	6DFH	(6DFNiCl) ₂	6DFCuCl	(6DF) ₂ Zn
1	1.383(3) /1.387(4)	1.393(6)	1.386(7) /1.384(7)	1.396(7) /1.399(7)
2	1.351(4) /1.353(4)	1.340(6)	1.352(7) /1.356(7)	1.354(8) /1.340(8)
3	1.403(4) /1.388(5)	1.439(6)	1.436(8) /1.418(9)	1.416(8) /1.434(9)
4	1.375(4) /1.383(5)	1.347(7)	1.346(9) /1.355(9)	1.347(9) /1.369(10)
5	1.404(4) /1.384(4)	1.427(6)	1.404(8) /1.426(8)	1.425(9) /1.408(9)
6	1.409(4) /1.431(4)	1.397(6)	1.407(8) /1.401(8)	1.396(9) /1.413(9)
7	1.396(4) /1.371(4)	1.397(6)	1.381(8) /1.379(8)	1.398(9) /1.388(8)
8	1.432(4) /1.443(4)	1.420(7)	1.418(8) /1.432(8)	1.424(9)/ 1.431(9)
9	1.335(4) /1.347(4)	1.370(7)	1.359(9) /1.346(9)	1.375(10)/ 1.360(9)
10	1.359(4) /1.446(4)	1.426(7)	1.423(9) /1.410(8)	1.422(9)/ 1.420(9)
11	1.335(4) /1.319(4)	1.343(6)	1.342(7) /1.340(7)	1.355(8) /1.338(7)
12	1.391(3) /1.401(3)	1.387(5)	1.402(7) /1.391(7)	1.388(7) /1.413(7)