Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

A Porphyrin(2.1.2.1) Bis-boron Complex as Deepred AIE Luminophore Induced by Intermolecular $F-\pi$ Interaction

Ningchao Liu,^a Xiaojuan Lv,^a Bentian Xiao,^a Daiki Kuzuhara,^{*b} Peifeng Mei,^c Naoki Aratani,^c Hiroko Yamada,^c Fengxian Qiu,^{*a} Jianming Pan,^{*a} and Songlin Xue^{*a}

 ^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
 ^bFaculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
 ^cDivision of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

1. Instruments, materials, and theoretical calculations

All solvents and chemicals were reagent grade quality, obtained commercially, and used without further purification except as noted. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a JNM-ECX 400 spectrometer (operating as 400 MHz for ¹H, 100 MHz for ¹³C, and 376 MHz for ¹⁹F) using the residual solvent as the internal reference for ¹H (δ = 7.26 ppm in CDCl₃), ¹³C (δ = 76.8 ppm in CDCl₃) and CF₃COOH as the external reference for ¹⁹F (δ = -76.5 ppm). HR-MALDI-TOF mass spectrum was recorded on a Bruker Daltonics autoflex MALDI-TOF MS spectrometer. The UV-Vis absorption spectra were measured with a JASCO UV/VIS/NIR Spectrophotometer V-670. The fluorescence spectra of boron complexes in solution, solid state, and aggregated particles in THF/H₂O were measured with a JASCO PL spectrofluorometer FP-6600. Fluorescence lifetimes were recorded on Picosecond Fluorescence Lifetime Measurement System C4780. The fluorescence quantum yields were recorded on an Absolute PL Quantum Yield Measurement System C9920-02 (Hamamatsu). The aggregated particles in THF/H_2O were prepared by the addition of H_2O into the solution of boron complexes in THF. The cyclic voltammetry was conducted in a solution of 0.1 M tetrabutylammonium perchlorate (TBAP) in dry-CH₂Cl₂ with a scan rate of 0.1 V s⁻¹ in an argonfilled cell. A glassy carbon electrode and a platinum wire were used as a working and a counter electrodes. A saturated Calomel electrode (SCE) was used as reference electrodes. All density functional theory calculations were achieved with the Gaussian 09 program package. The geometries of 2a, 3a, 2b, and 3b were optimized at the Becke's three-parameter hybrid functional combined with the Lee-Yang-Parr correlation functional abbreviated as the B3LYP level of density functional theory with the 6-31G(d, p) level.¹

2. X-ray Analysis

X-ray crystallographic data for **2a** (CCDC: 2122758), **3a** (CCDC: 2105609), **2b** (CCDC: 2105610), and **3b** (CCDC: 2107596) complexes were recorded at 297 K and 193 K on a Rigaku R-AXIS RAPID/S using M_o-K_α radiation from the corresponding set of confocal optics. The structures were solved by direct methods and refined on F^2 by full-matrix least-squares using the CrystalClear and SHELXS-2000 program.²

3. Synthesis Work

Synthesis of 1a and 1b

Dipyrrolylbenzene (**DPB**) and dibenzoporphyrins(2.1.2.1) (**1a** and **1b**) were synthesized through our established method.³

1a. DPB (0.20 g, 1.0 mmol) and benzaldehyde (0.10 g, 1.0 mmol) were dissolved in dry CH₂Cl₂ (50 mL) and bubbled with nitrogen for 5 min, then BF₃•OEt₂ (4.3 mg, 0.03 mmol, 3 mol%) was added to reaction mixture. The reaction mixture was stirred for 3 hours at room temperature under nitrogen in the dark. The DDQ (0.22 g, 1.0 mmol) was added to the reaction mixture, which was stirred for 1 hour. The residue was purified by alumina column chromatography (CH₂Cl₂) and silica gel column chromatography (CH₂Cl₂/MeOH = 20/1), and gave the **1a** (74 mg, 0.13 mmol) in 25% yield. ¹H NMR (400 MHz, CDCl₃) δ =12.23 (brs, 2H), 7.51 (d, *J* = 8 Hz, 4H), 7.46-7.39 (m, 14H), 6.51 (d, *J* = 4 Hz, 4H), 6.27 (d, *J* = 4 Hz, 4H) ppm. HR-MALDI-TOF-MS: Calcd. For C₄₂H₂₈N₄: 588.2308 [*M*]⁺, Found: 588.2301. UV-Vis (in CH₂Cl₂) λ [nm] (ε [M⁻¹cm⁻¹]): 434 (73300), 492(10100).

1b. DPB (0.20 g, 1.0 mmol) and pentafluorobenzaldehyde (0.20 g, 1.0 mmol) were dissolved in dry CH₂Cl₂ (50 mL) and bubbled with nitrogen for 5 min, then BF₃•OEt₂ (4.3 mg, 0.03 mmol, 3 mol%) was added to reaction mixture. The reaction mixture was stirred for 3 hours at room temperature under nitrogen in the dark. The DDQ (0.23 g, 1.0 mmol) was added to the reaction mixture, which was stirred for 1 hour. The residue was purified by alumina column chromatography (CH₂Cl₂) and silica gel column chromatography (CH₂Cl₂/MeOH = 20/1), and gave the **1b** (35 mg, 0.05 mmol) in 9% yield. ¹H NMR (400 MHz, CDCl₃) δ = 12.18 (brs, 2H), 7.48 (s, 8H), 6.39 (d, *J* = 4 Hz, 4H), 6.27 (d, *J* = 4 Hz, 4H) ppm. ¹⁹F NMR (CDCl₃, 376 MHz, CF₃COOH) δ = -138.04 - 138.19 (m, 2F), -139.02 - -139.12 (m, 2F), -152.61 - -152.72 (m, 2F), -161.12 - -161.42 (m, 4F) ppm. HR-MALDI-TOF-MS: Calcd. For C₄₂H₁₈F₁₀N₄: 768.1366 [*M*]⁺, Found: 768.1359. UV-Vis (in CH₂Cl₂) λ [nm] (ε [M⁻¹cm⁻¹]): 433 (75600), 490 (10500).

Synthesis of 2a and 3a

To a solution of 1a (60 mg, 0.10 mmol) in toluene (30 mL) and triethylamine (TEA) (0.40 g, 4.0

mmol) was added BF₃•Et₂O (1.4 g, 10 mmol) under argon. After stirring at 80 _oC for 12 h, the reaction mixture was extracted with CH₂Cl₂. The organic phase was washed with aqueous NaHCO₃, water, and brine, and dried over Na₂SO₄. After removal of the solvent, the resulting crude product was purified by silica gel column chromatography (CH₂Cl₂) to give 2a (41 mg, 0.065 mmol) in 65% yield and **3a** (16 mg, 0.02 mmol) in 24% yield. **2a**. ¹H NMR (400 MHz, CDCl₃) δ =13.16 (brs, 1H), 7.54 (m, J = 24 Hz, 6H), 7.48(d, J = 8Hz, 2H), 7.40 (m, J = 20 Hz, 10H), 6.74 (d, J = 4 Hz, 2H), 6.47 (d, J = 4 Hz, 2H), 6.25 (d, J = 4 Hz, 2H), 6.08 (d, J = 4 Hz, 2H) ppm. ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 157.88, 155.07, 141.09, 135.68, 132.60, 130.27, 128.76, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 128.21, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 120.65, 128.49, 128.21, 127.43, 128.49, 128.21, 127.43, 120.65, 128.49$ 117.76 ppm. ¹⁹F NMR (CDCl₃, 376 MHz, CF₃COOH) δ = -131.06 - -131.62 (m, 1F), -151.21 - -151.492 (m, 1F) ppm. HR-MALDI-TOF-MS: Calcd. For C₄₂H₂₈BF₂N₄: 637.2377 [*M*+H]⁺, Found: 637.2371. UV-Vis (in CH₂Cl₂) λ [nm] (ε [M⁻¹cm⁻¹]): 459 (79500), 534 (6800). **3a**. ¹H NMR (400 MHz, CDCl₃) δ = 7.52 (m, J = 20 Hz, 8H), 7.47 (m, J = 20 Hz, 10H), 6.69 (d, J = 4 Hz, 4H), 6.16 (d, J = 4 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 157.16$, 145.94, 135.21, 134.54, 133.46, 130.17, 129.62, 128.73, 128.33, 128.08, 127.62, 120.20 ppm. ¹⁹F NMR (CDCl₃, 376 MHz, CF₃COOH) δ = -128.80 (s, 2F) ppm. HR-MALDI-TOF-MS: Calcd. For C₄₂H₂₆B₂F₂N₄O+Na⁺: $685.2167 \ [M+Na]^+$, Found: 685.2162. UV-Vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]): 475 (89000), 563(6650).

Synthesis of 2b and 3b

To a solution of 1b (38 mg, 0.05 mmol) in toluene (20 mL) and triethylamine (TEA) (0.20 g, 2.0 mmol) was added BF₃•Et₂O (0.71 g, 5.0 mmol) under argon. After stirring at 80 °C for 12 h, the reaction mixture was extracted with CH₂Cl₂. The organic phase was washed with aqueous NaHCO₃, water, and brine, and dried over Na₂SO₄. After removal of the solvent, the resulting crude product was purified by silica gel column chromatography (CH_2Cl_2) to give **2b** (25 mg, 0.030 mmol) in 60% yield and **3b** (6.3 mg, 0.0075 mmol) in 15% yield. **2b**. ¹H NMR (400 MHz, CDCl₃) δ =12.90 (brs, 1H), 7.59 (m, J = 8 Hz, 2H), 7.44 (m, J = 24 Hz, 6H), 6.57 (d, J = 4 Hz, 2H), 6.34 (d, J = 4 Hz, 2H), 6.23 (d, J = 4 Hz, 2H), 6.04 (d, J = 4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.13, 156.37,$ 140.52, 135.12, 132.00, 128.92, 128.31, 128.16, 127.80, 127.20, 122.00 118.85 ppm. ¹⁹F NMR $(CDCl_3, 376 \text{ MHz}, CF_3COOH) \delta = -130.89 - -131.43 \text{ (m, 1F)}, -137.05 - -137.16 \text{ (m, 1F)}, -137.87 \text{ (m,$ (m, 1F), -138.62 - -138.90 (m, 2F), -150.02 - -150.14 (m, 1F), -151.01 - -151.48 (m, 1F), -152.74 --152.86 (m, 1F), -159.70 --159.90 (m, 2F), -161.18 --161.56 (m, 2F) ppm. HR-MALDI-TOF-MS: Calcd. For C₄₂H₁₇BF₁₂N₄: 815.1385 [*M*]⁺, Found: 815.1380. UV-Vis (in CH₂Cl₂) λ [nm] (ε [M⁻ ¹cm⁻¹]): 460 (12400), 475 (84600). **3b**. ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (s, br, 8H), 6.55 (d, J = 4 Hz, 4H), 6.15 (d, J = 4 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 159.06, 135.05, 132.60, 129.10, 128.07, 127.23, 121.40 ppm. ¹⁹F NMR (CDCl₃, 376 MHz, CF₃COOH) δ = -130.03 (brs, 2F), -136.68 - -136.77 (m, 2F), -137.96 - -138.01 (m, 2F), -150.19 - -150.31 (m, 2F), -159.68 - -159.81 (m, 2F), -160.11 - -160.25 (m, 2F) ppm. HR-MALDI-TOF-MS: Calcd. For $C_{42}H_{16}B_2F_{12}N_4O+Na^+$: 863.1283 [*M*+Na]⁺, Found: 863.1291. UV-Vis (in CH₂Cl₂) λ [nm] (ε [M⁻ ¹cm⁻¹]): 461 (17400), 486 (100300).

4. Supporting Figures

Fig. S1. Reported boron complexes of rigid or flexible expanded porphyrin macrocycles containing various bridging units.

Fig. S2. HR-MALDI-TOF-MS spectrum of 1a.

Fig. S3. HR-MALDI-TOF-MS spectrum of 1b.

Fig. S4. ¹H NMR spectrum of 1a in CDCl₃ at 293 K. The asterisks indicate residual solvent peaks.

Fig. S5. ¹H NMR spectrum of **1b** in CDCl₃ at 293 K. The asterisks indicate residual solvent peaks.

Fig. S6. Crystal structures and angles of (a) 1a and (b) 1b. Ellipsoids of crystal structures are set at 50% probability. The data of 1b was taken from ref. 3c.

Fig. S7. HR-MALDI-MS spectrum of 2a.

Fig. S11. ¹H NMR spectra of (a) **1a**, (b) **2a**, and (c) **3a** in CDCl₃ at 293 K. The asterisks indicate residual solvent peaks.

Fig. S12. ¹H NMR spectrum of 2a in CDCl₃ at 293 K.

Fig. S16. ¹⁹F NMR spectrum 1b in CDCl₃ at 293 K.

Fig. S18. ¹⁹F NMR spectrum of **2b** in CDCl₃ at 293 K.

Fig. S19. ¹⁹F NMR spectrum of **3a** in CDCl₃ at 293 K.

Fig. S21. ¹³C NMR spectrum of 2a in CDCl₃ at 293 K.

Fig. S23. ¹³C NMR spectrum of 3a in CDCl₃ at 293 K.

Fig. S24. ¹³C NMR spectrum of **3b** in CDCl₃ at 293 K.

Fig. S25. CV of 2a, 3a, 2b, and 3b in CH_2Cl_2 with 0.1 M TBAP. Scan rate = 0.1 V s⁻¹.

Fig. S26. UV-Vis absorption spectra of **2a** in hexane (green line), toluene (blue line), THF (red line), and CHCl₃ (black line).

Fig. S27. UV-Vis absorption spectra of **2b** in hexane (green line), toluene (blue line), THF (red line), and CHCl₃ (black line).

Fig. S28. Frontier molecular orbitals and energy diagrams of 2a, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S29. Frontier molecular orbitals and energy diagrams of **2b**, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S30. The UV-Vis absorption spectrum (black line, left axis) and oscillator The UV-Vis absorption spectrum (black line, left axis) and oscillator strengths (red bar, right axis), which is calculated at the B3LYP/6-31G(d, p) level of theory of **2a**.

State	Major Composition	Exci. (eV/nm)	f
1	H* -> L (0.70565)	1.96/631.92	0.0022
2	H-1 -> L (0.52898) H -> L+1 (0.44183)	2.64/469.71	0.0108
3	H-2 -> L (0.67550) H -> L+1 (0.11487) H-1 -> L+1 (0.15261)	2.93/423.59	0.0178
4	H -> L+1 (0.50985) H-1 -> L (-0.38830)	3.14/394.50	0.7417

Table S1. Major composition, vertical excitation energies (E, eV/nm), and oscillator strengths (f) for the lowest optically allowed excited states of **2a**, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S31. The UV-Vis absorption spectrum (black line, left axis) and oscillator strengths (red bar, right axis), which is calculated at the B3LYP/6-31G(d, p) level of theory of 2b.

State	Major Composition	Exci. (eV/nm)	f
1	H* -> L (0.70455)	1.87/664.73	0.0056
2	H-1 -> L (54408) H -> L+1 (-0.41744)	2.52/492.18	0.0171
3	H-1 -> L+1 (0.54678) H-2 -> L (0.38513)	2.85/434.7	0.0297
4	H -> L+1 (0.51916) H-1 -> L (35954)	3.08/403.1	0.7280

Table S2. Major composition, vertical excitation energies (E, eV/nm), and oscillator strengths (*f*) for the lowest optically allowed excited states of **2b**, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S32. Fluorescence decay profile of 3a in toluene. Theoretical fits are also shown in red lines.

Fig. S33. Emission of 3b in toluene.

Fig. S34. Fluorescence decay profiles of **3b** in (a) solid (blue line) and (b) particle states (in THF/H₂O = 1/9, black line). Theoretical fits are also shown in red lines.

Cpd	λ_{abs}/nm in DCM ($\epsilon/mol^{-1}m^5cm^{-1}$)	$\lambda_{ m em}/ m nm$	$arPsi_F$	τ/ns
2a	456(0.795) 534(0.068)	N/A	N/A	N/A
2b	460(0.890) 563(0.067)	N/A	N/A	N/A
3 a	452(0.124) 475(0.846)	585 in toluene	0.022	4.32
3b	461(0.174) 486(1.003)	N/A in THF 680 (solid) 648 (THF/H ₂ O=1/9)	N/A in THF 0.015 (solid) 0.002 (THF/H ₂ O=1/9)	N/A in THF, 1.9 (34%), 5.5 (66%) (solid) 1.9 (22%), 5.7 (78%) (THF/H ₂ O=1/9)

Table S3. Optical Properties of 2a, 2b, 3a, and 3b.

Fig. S35. Frontier molecular orbitals and energy diagrams of 3a, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S36. Frontier molecular orbitals and energy diagrams of 3b, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S37. The UV-Vis absorption spectrum (black line, left axis) and oscillator The UV-Vis absorption spectrum (black line, left axis) and oscillator strengths (red bar, right axis), which is calculated at the B3LYP/6-31G(d, p) level of theory of **3a**.

State	Major Composition	Exci. (eV/nm)	f
1	H-1 -> L+1 (0.23868) H* -> L (0.66460)	2.36/524.45	0.0004
2	H-1 -> L (0.52845) H -> L+1 (0.46910)	2.43/510.48	0.0024
3	H -> L (-0.23037) H-1 -> L+1 (0.65708)	2.70/458.82	0.0021
4	H-2 -> L (0.55237) H-1 -> L (-0.27531) H -> L+1 (0.33086)	3.02/410.54	0.2505
5	H-2 -> L (0.42346) H-1 -> L (0.34732) H -> L+1 (-0.37657)	3.12/397.0	0.4472

Table S4. Major composition, vertical excitation energies (E, eV/nm), and oscillator strengths (f) for the lowest optically allowed excited states of **3a**, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S38. The UV-Vis absorption spectrum (black line, left axis) and oscillator The UV-Vis absorption spectrum (black line, left axis) and oscillator strengths (red bar, right axis), which is calculated at the B3LYP/6-31G(d, p) level of theory of **3b**.

State	Major Composition	Exci. (eV/nm)	f
1	H-1 -> L+1 (-0.28344) H* -> L (0.64720)	2.27/545.37	0.0001
2	H-1 -> L (0.53196) H -> L+1 (-0.46511)	2.32/534.21	0.0031
3	H-2 -> L+1 (0.59801) H-1 -> L (-0.22973) H -> L+1 (-0.28755)	2.92/424.62	0.1699
4	H -> L+1 (0.40718) H-1 -> L (0.36753) H-2 -> L (0.35196)	3.07/404.29	0.5112

Table S5. Major composition, vertical excitation energies (E, eV/nm), and oscillator strengths (f) for the lowest optically allowed excited states of **3b**, calculated at the B3LYP/6-31G(d, p) level of theory.

Fig. S39. Packing structure and selective distances (Å) of (a) **1b** and (b) **2b** in the crystal structure. The data of **1b** was taken from ref. 3c.

Fig. S40. (a) One view (b-axis) and the secondary interaction $(F-\pi)$ (Å) of the packing structures of **3b** were observed in the crystal structure.

Fig. S41. Electrostatic potential surfaces of (a) 3a and (b) 3b.

5. Crystal Data

Table S6. Crystal data of 2a Empirical formula C₄₂H₂₇BF₂N₄, 3(CH₃OH) Formula weight 732.61 Temperature/K 213.00 Crystal system monoclinic Space group $P2_1/c$ Unit cell dimensions a = 15.6793(5) Å b = 15.5603(6) Å $\beta = 106.768(2)^{\circ}$ c = 16.0167(5) Å Volume/Å³ 3741.5(2) Ζ 4 $\rho_{calc}g/cm^3$ 1.301 μ/mm^{-1} 0.457 *F*(000) 1536 Crystal size/mm³ $0.05 \times 0.02 \times 0.01$ Radiation GaK α (λ = 1.34139) Theta range for data collection/° 3.522 to 45.023 Index ranges $-19 \le h \le 19, -18 \le k \le 18, -19 \le l \le 19$ Reflections collected 33224 Independent reflections 7016 [$R_{int} = 0.1013$] Data/restraints/parameters 7106/0/442 Goodness-of-fit on F^2 1.024 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0852, wR_2 = 0.2208$ Final R indexes [all data] $R_1 = 0.1693, wR_2 = 0.2728$ Largest diff. peak/hole / e Å⁻³ 0.27/-0.34

Fig. S42. Crystal structure of 2a. The thermal ellipsoids represent a 40% probability.

Table S7. Crystal data of **3a**Empirical formula

 $C_{44}H_{34}B_2F_2N_4O_3, 0.5(CHCl_3)$

Formula weight	721.97	
Temperature/K	193.00	
Crystal system	monoclinic	
Space group	<i>P</i> 2 _{1/c}	
Unit cell dimensions	a = 18.948(12) Å	
	b = 13.024(7) Å	$\beta = 110.339(17)^{\circ}$
	c = 15.721(9) Å	
Volume/Å ³	3638(2)	
Ζ	4	
$\rho_{cale}g/cm^3$	1.318	
µ/mm ⁻¹	0.192	
<i>F</i> (000)	1484.0	
Crystal size/mm ³	$0.12 \times 0.1 \times 0.1$	
Radiation	MoKa ($\lambda = 0.71073$)	
Theta range for data collection/°	2.087 to 22.998	
Index ranges	$-18 \le h \le 20, -14 \le k \le 1$	$14, -17 \le l \le 17$
Reflections collected	17472	
Independent reflections	5071 [$R_{\rm int} = 0.0515$]	
Data/restraints/parameters	5071/276/503	
Goodness-of-fit on F^2	1.033	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0630, wR_2 = 0.16$	14
Final R indexes [all data]	$R_1 = 0.1073, wR_2 = 0.19$	023
Largest diff. peak/hole / e Å ⁻³	0.270/-0.266	

Even two fluorine atoms refine to an occupancy of 92% and 90%, but the structure of this complex has been proved by HR-MS, ¹H NMR and ¹⁹F NMR without any doubt. It's possible to happen these fluorine atoms positions can be exchanged for oxygen atoms because MeOH has been used to make crystals of 3a.⁴

Fig. S43. Crystal structure of 3a. The thermal ellipsoids represent a 50% probability.

Table S8. Crystal data of **2b**Empirical formulaFormula weight

 $\begin{array}{c} C_{43}H_{19}BF_{12}N_4Cl_2,\,CH_2Cl_2\\ 901.33 \end{array}$

Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pbca
Unit cell dimensions	a = 15.0470(13) Å
	b = 19.8971(17) Å
	c = 26.914(2) Å
Volume/Å ³	8057.7(12)
Ζ	8
$\rho_{calc}g/cm^3$	1.486
μ/mm^{-1}	1.496
<i>F</i> (000)	3616.0
Crystal size/mm ³	$0.12 \times 0.1 \times 0.1$
Radiation	$GaK\alpha (\lambda = 1.34139)$
Theta range for data collection/°	3.508 to 58.195
Index ranges	$-19 \le h \le 19, -25 \le k \le 25, -34 \le l \le 34$
Reflections collected	82903
Independent reflections	9019 [$R_{int} = 0.0825$]
Data/restraints/parameters	9019/0/532
Goodness-of-fit on F^2	1.014
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0511, wR_2 = 0.1331$
Final R indexes [all data]	$R_1 = 0.0963, wR_2 = 0.1588$
Largest diff. peak/hole / e Å ⁻³	0.185/-0.245

Fig. S44. Crystal structure of 2b. The thermal ellipsoids represent a 50% probability.

Table S9. Crystal data of **3b** Empirical formula Formula weight Temperature/*K*

 $\begin{array}{c} C_{42}H_{16}B_2F_{12}N_4O\\ 842.21\\ 193.00 \end{array}$

Crystal system	monoclinic
Space group	P21/c
Unit cell dimensions	a = 21.3588(18) Å
	$b = 11.3229(8)$ Å $\beta = 92.765(4)^{\circ}$
	c = 14.4859(11) Å
Volume/Å ³	3499.2(5)
Ζ	4
$\rho_{calc}g/cm^3$	1.599
µ/mm ⁻¹	0.789
F(000)	1688.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.1
Radiation	$GaK\alpha (\lambda = 1.34139)$
Theta range for data collection/°	3.604 to 120.728
Index ranges	$-27 \le h \le 19, -14 \le k \le 10, -18 \le l \le 17$
Reflections collected	27005
Independent reflections	7693 $[R_{int} = 0.0532, R_{sigma} = 0.0467]$
Data/restraints/parameters	7693/0/550
Goodness-of-fit on F^2	1.046
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0473, wR_2 = 0.1222$
Final R indexes [all data]	$R_1 = 0.0770, wR_2 = 0.1385$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.33

Fig. S45. Crystal structure of 3b. The thermal ellipsoids represent a 50% probability.

6. References

(1) Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,

G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

(2) G. Sheldrick, Acta Cryst. 2008, A64, 112.

(3) (a) S. Xue, D. Kuzuhara, N. Aratani, H. Yamada, Org. Lett. 2019, 21, 2069; (b) D. Kuzuhara, W. Furukawa, A. Kitashiro, N. Aratani, H. Yamada, Chem. - Eur. J. 2016, 22, 10671; (c) N. Liu, W. R. Osterloh, H. Huang, X. Tang, P. Mei, D. Kuzuhara, Y. Fang, J.Pan, H. Yamada, F. Qiu, K. M. Kadish, S. Xue, Inorg. Chem. 2022, 61, 3563.
(4) (a) R. E. Mesmer, A. C. Rutenberg, Inorg. Chem. 1973, 12, 699; (b) D. Feldman, D. Segal-Lew, M. Rabinovitz, J. Org. Chem. 1991, 56, 7350.