Supporting Information

A rare potassium-rich zirconium fluorophosphonate with high Eu³⁺ adsorption capacities from acidic solutions

Jiarong Zhang,^{‡a,b,c} Long Chen,^{‡c}, Lanhua Chen,^c Lei Chen,^c Yugang Zhang,^c Changlun Chen^{*a,b}, Zhifang Chai^c and Shuao Wang^{*c}

^aInstitute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, P. R. China. E-mail: clchen@ipp.ac.cn. ^bUniversity of Science and Technology of China, Hefei 230026, P. R. China. ^cState Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. E-mail:

shuaowang@suda.edu.cn.

‡ These authors contributed equally to this work.

Table of Contents

- **S1.** Experimental section
- S2. X-ray crystallography (Table S1, Table S2)
- S3. Bond valence sum (BVS) (Table S3)
- S4. Comparison of Eu(III) sorption capacities of SZ-8 and other

adsorbents (Table S4)

- **S5. FT-IR spectrum (Figure S1)**
- S6. Powder X-ray diffraction (PXRD) for SZ-8 after treatment with
- pH 1 solution (Figure S2)
- **S7.** Kinetics fitting results (Figure S3)
- S8. SEM-EDS analysis of SZ-8 before and after ion-exchange (Figure

S4 - Figure S6)

S9. PXRD of SZ-8 after Eu³⁺ and Sr²⁺ adsorption (Figure S7)

S1. Experimental section

Synthesis of SZ-8: The mixture of $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$ (64.4 mg, 0.2 mmol), methylenediphosphates (35.2 mg, 0.2 mmol), HNO₃ (70 µL), HF (20 µL), 50 mg KNO₃ and 2.5 mL mixed solvent (V_{DMA} : V_{H2O} (mL) = 4 : 1) was added into a 10 mL stainless steel PTFE vial. Then, the vial was heated to 200 °C for 3 days and cooled to room temperature at a rate of 5 °C/h. After being washed with ethanol and deionized water, colorless crystals were finally obtained as a pure phase.

X-ray Crystallography Studies: Single-crystal X-ray diffraction data collections of **SZ-8** were performed on a Bruker D8-Venture diffractometer with a Turbo X-ray Source (Mo–K α radiation, $\lambda = 0.71073$ Å) adopting the direct-drive rotating anode technique and a CMOS detector under 298 K. The data of **SZ-8** was collected using the program APEX3 and then processed using SAINT routine in APEX3. The structure of **SZ-8** was solved by direct methods and refined by the full-matrix least-squares on F² using the SHELXTL.

Characterizations and Methods

Instrumentations: All the Powder X-ray diffraction (PXRD) patterns were collected from 5° to 50° with a step of 0.02° on a Bruker D8 Advance diffractometer with Cu K α radiation (λ =1.54056 Å) and a Lynxeye onedimensional detector. The FT-IR spectra of **SZ-8** with KBr were recorded in the range of 4000-500 cm⁻¹ on a Thermo Nicolet iS50 spectrometer. Thermogravimetric analyses were carried out on a NETZSCH STA449F3 instrument in the range of 30-900 °C under a nitrogen flow at a heating rate of 10 K/min for the dried samples of **SZ-8**. Scanning electron microscopy images and energy-dispersive spectroscopy data (SEM/EDS) were recorded on an FEI Quanta 200FEG Scanning Electron Microscope with the energy of the electron beam being 30 keV. **SZ-8** samples were directly mounted on the carbon conductive tape and then coated with Au. The concentration of nonradioactive cations in the adsorption experiments was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES, Thermo Fisher Scientific iCAP 7000) or inductively coupled plasma-mass spectrometry (ICP-MS, Thermo Finnigan high-resolution magnetic sector Element 2).

Hydrolytic Stability Measurements: Hydrolytic stability measurements for **SZ-8** were studied by stirring the samples in HNO_3 solutions with different pH values of 1 to 3 for 1 d. The solids were recollected and dried for PXRD patterns analysis.

 γ Radiation Resistance Measurements: γ irradiation experiment was carried out using a ⁶⁰Co irradiation source (2.22 × 10¹⁵ Bq). **SZ-8** was irradiated at a dose rate of 1.2 kGy/h for 200 kGy in a dry and submerged statement, respectively. **SZ-8** was then collected for the PXRD patterns analysis. *Sr*²⁺ *Sorption Experiments:* All the experiments were carried out at room temperature using the batch method. The solid/liquid ratio in all batch experiments was 1 g/L. In a typical ion-exchange experiment of **SZ-8**, 10 mg **SZ-8** was added into a 10 mL aqueous solution containing a certain cation (Eu³⁺, Sr²⁺, or Cs⁺). The mixture was kept stirring for 18 h. The concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and/or inductively coupled plasma-atomic emission spectrometry (ICP-AES). The solids were separated by centrifugation or filtration. The distribution coefficient K_d is given by the equation:

$$K_{\rm d} = (V[(C_0 - C_{\rm e})/C_{\rm e}])/m$$

The adsorption capacity was calculated by

$$q = V(C_0 - C_e)/m$$

where q is the adsorption capacity, V is the volume (mL or L) of the testing solution, C_0 and C_e are the initial and equilibrium concentration of cations in the solution (ppm), and m is the amount of the **SZ-8** samples (g) used in the experiment.

Kinetic Studies: 40 mg of **SZ-8** material was added into a 40 mL solution containing target cations of Sr^{2+} (~ 5 ppm) and Eu^{3+} (~ 13 ppm) in pH 3. The mixture was stirred by a magnetic bar for the desired contact time. The concentrations as a function of time were obtained to determine the exchange kinetics line.

pH-Dependent adsorption: The pH-dependent adsorptions were conducted with Cs⁺ concentration of ~ 90 ppm, Sr²⁺ concentration of ~ 90 ppm, and Eu³⁺ concentration of ~ 220 ppm in the pH range of 1-6.

SZ-8 dissolution: SZ-8 material (15 mg) was added into pH 1 solution (15 mL). The mixture was stirred by a magnetic bar for the desired contact time and then the phosphorus concentrations were determined by ICP-OES to calculate the leaching ratio.

Selectivity experiments: SZ-8 (10 mg) was added into pH 2 solution (10 mL) containing Eu^{3+} , Sr^{2+} and Cs^+ , which are at the initial molar rate of 1:1:1. The mixture was stirred for 12 h followed by measured the concentrations of the three cations.

S2. X-ray crystallography

Table S1. Crystallographic data for SZ-8.

CCDC No.	2168018		
Formula	$K_2Zr[CH_2(PO_3)_2]F_2$		
$Mr[g mol^{-1}]$	377.37		
Crystal system	monoclinic		
Space group	C2/c		
a(Å)	13.167(4)		
b(Å)	4.7846(14)		
c(Å)	14.094(4)		
$\alpha(^{\circ})$	90.00		
β(°)	91.147(16)		
γ(°)	90.00		
V(Å ³)	887.8(5)		
Z	2		
ρ_{calcd} (g cm ⁻ 3)	2.823		
M (mm ⁻¹)	2.568		
F(000)	720		
T(K)	296(2)		
R1, ^a wR2 ^b (Ι>2σ(Ι))	0.0583, 0.1321		
R1, ^a wR2 ^b (all data)	0.1095, 0.1661		
$aR1 = \Sigma Fo - Fc / \Sigma Fo $. bwR2	= $[\Sigma w(Fo2 - Fc2)2/\Sigma w(Fo2)2]1/2$		

Table S2. Selected bond distances (Å) of SZ-8

Zr1-O2	2.092(5)	P1-O1	1.490(6)	
Zr1-O3	2.092(6)	P1-O2	1.535(6)	
Zr1-F1	1.991(6)	P1-O3	1.542(6)	

S3. Bond Valence Sum (BVS) calculations

The bond valence of a bond length d_{ij} is calculated by the most commonly adopted empirical expression:

$$v_{ij} = exp[(R_{ij}-d_{ij})/b].$$

Here b is equal to 0.37 Å, d_{ij} is the bond length in crystals.^[1]

Table S3. BVS data of O atoms.

Atom	BVS value
O1	2 (P=O)
O2	1.8628
O3	1.8402

S4. Comparison of Eu(III) sorption capacities of SZ-8 and other adsorbents

Table S4. Comparison of Eu(III) sorption capacities of SZ-8 and

Materials	Conditions	$q \; (\text{mmol/g})$	References
HMS	pH = 4.0, T = 298 K	0.17	2
MWCNTs	pH = 4.3, T = 298 K	0.0073	3
CNFs	pH = 6.5, T = 298 K	0.599	4
GOs	pH = 4.5, T = 298 K	1.05	5
PA/TNTs	pH = 5.5, T = 298 K	0.96	6
GO@TiP	pH = 5.5, T = 293 K	0.42	7
FJSM-SnS-3	$pH \sim 5, T = 298 K$	0.41	8
KMS-5	pH = 2, T = 298 K	0.57	9
SZ-8	pH = 2, T = 298 K	0.73	This work

other adsorbents.

Figure S1. FT-IR spectrum of SZ-8.

S6. Powder X-ray diffraction (PXRD) for SZ-8 after treatment with

pH 1 solution

Figure S2. (a) The leaching phosphorus concentration in pH 1 solution under various contact time. (b) The PXRD pattern for SZ-8 after treatment with pH 1 solution.

S7. Kinetics fitting results

Figure S3. Kinetics fitting results of Eu^{3+} (a) and Sr^{2+} (b) adsorbed by SZ-8.

S8. SEM-EDS mapping analysis

Figure S4. SEM image of SZ-8.

Figure S5. SEM image and EDS data of SZ-8 after Sr^{2+} adsorption.

Figure S6. SEM analysis of **SZ-8** after Eu³⁺ adsorption.

Figure S7. The PXRD patterns after Eu³⁺ and Sr²⁺ adsorption.

References:

- [1] N. E. Brese and M. O'Keeffe, Acta Cryst. 1991, B47, 192-197.
- [2] M. Hamed, M. Holiel and I. Ahmed, *Radiochim. Acta*, 2016, **12**, 873– 890.
- [3] Q. Fan, D. Shao, J. Hu, C. Chen, W. Wu and W. Wang, *Radiochim. Acta*, 2009, 97, 141-148.
- [4] Y. Sun, Z. Wu, X. Wang, C. Ding, W. Cheng, S. Yu and X. Wang, *Environ. Sci. Technol.*, 2016, **50**, 4459-4467.
- [5] Y. Sun, Q. Wang, C. Chen, X. Tan and X. Wang, *Environ. Sci. Technol.*, 2012, 46, 6020-6027.
- [6] C. Wu, Y. Cai, L. Xu, J. Xie, Z. Liu, S. Yang and S. Wang, J. Mol. Liq., 2018, 258, 66-73.
- [7] C. Li, Y. Huang and Z. Li, J. Mater. Chem. A, 2014, 2, 14979-14985.
- [8] W. Li, J. Li, B. Zhang, H. -Y. Sun, J. Jin, X. Huang and M. Feng, ACS Appl. Mater. Interfaces, 2021, 13(8), 10191-10201.
- [9] C. Xiao, Z. H. Fard, D. Sarma, T. B. Song, C. Xu and M. G. Kanatzidis, J. Am. Chem. Soc., 2017, 139(46), 16494-16497.