Supplementary Information

Synthesis and structural properties of a 2D Zn(II) dodecahydroxy-closo-dodecaborate coordination polymer

Austin D. Ready ${ }^{+a}$, Shona M. Becwar ${ }^{\text {e }}$, Dahee Jung ${ }^{\text {ab,b }}$, Anna Kallistova ${ }^{\text {c }}$, Emily Schueller ${ }^{\text {c }}$, Kierstyn P. Anderson ${ }^{\text {a,b }}$, Rebecca Kubena ${ }^{\text {a }}$, Ram Seshadric, ${ }^{\text {,d, }, ~ B r a d l e y ~ F . ~ C h m e l k a * e, ~ A l e x a n d e r ~ M . ~}$ Spokoyny*a,b
\dagger These authors contributed equally
*bradc@ucsb.edu
*spokoyny@chem.ucla.edu

${ }^{a}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
${ }^{b}$ California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, USA
${ }^{\text {c M Materials Department and Materials Research Laboratory, University of California, Santa }}$ Barbara, Santa Barbara, CA, USA
${ }^{d}$ Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
${ }^{e}$ Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA

Calculationswere performed using SCM ADF software. XYZ coordinates for $\left[\mathrm{B}_{12}(\mathrm{OH})_{12}\right]^{2-}$ determined by refinement of the powder pattern were imported, and the structure was subsequently modified within the software to create a monodentate, bidentate, and fully bound cluster (two monodentate and one bidentate). To reduce the computational complexity, Zn (II) ions were replaced by electron-withdrawing - CF_{3} or - CF_{2} groups for the monodentate and bidentate interactions, respectively. Geometry pre-optimizations were performed, followed by full geometry optimizations at the GGA:PBE-D3(BJ) theory level with a DZP basis set and scalar relativistic effects considered. Electron densities were approximated by visualizing the Mulliken charges from the optimized geometries.

DFT Geometry Coordinates

Monodentate Model

B	10.03641626	0.70477989	4.25036940
B	9.86041612	0.91832069	1.37492897
B	10.84443567	1.33883616	2.78722167
B	9.07410742	1.39416003	2.90217249
B	11.31314064	-0.04102169	1.77195483
B	8.54657298	-0.09218594	3.70593632
B	8.42750664	0.04862699	1.92450214
B	11.41759731	-0.17551100	3.52625271
O	10.21046734	1.28710518	5.57590467
O	9.99484615	1.89312023	0.28857152
O	11.48592717	2.65127162	2.72393846
O	8.48212971	2.73171711	2.97793617
O	12.36948369	-0.03293479	0.76586790
O	7.28673613	-0.25303660	4.42409684

O	7.06594926	0.01815626	1.40161372
H	11.22138264	-3.03849040	1.42303935
B	9.97828320	-1.08937531	4.11664441
B	10.78877609	-1.56982927	2.59658628
B	8.99458501	-1.47693594	2.67298394
O	9.99988404	-1.85179240	5.34778269
B	9.81877147	-0.86904833	1.24406481
O	11.49367255	-2.80285841	2.33816524
O	8.02003400	-2.56062674	2.64587197
O	9.93512675	-1.58607964	-0.02013589
H	10.80854249	-1.28004740	-0.36118097
H	6.85130685	-0.94406827	1.42243947
H	8.34409045	2.98684693	2.04042765
H	10.58658644	2.57268760	0.69629076
H	10.77948059	3.25148754	3.05999258
H	11.17900886	1.31654313	5.72463849
H	12.15587060	0.74865946	0.20958506
H	9.90880745	-1.17696623	6.05535366
H	7.50484123	-2.41734468	3.47324682
H	6.61891362	0.03994560	3.76280987
O	12.61098248	-0.22071594	4.43161112
F	14.17446441	1.06937723	3.41185957
C	13.84397960	-0.12734681	4.02309306
F	14.69883623	-0.22062261	5.12404294
F	14.25598674	-1.11026051	3.15308815

Bidentate Model

B	10.08719002	0.83793251	4.15365152
B	10.18662900	0.79277030	1.28647311
B	11.11471683	1.21897185	2.73540103
B	9.35549107	1.45676299	2.65381487
B	11.50970186	-0.24497295	1.82647977
B	8.55528105	0.14078610	3.51174597
B	8.60383452	0.10338866	1.72206769
B	11.43804108	-0.25566632	3.63989979
O	10.23660844	1.51496346	5.42453822
O	10.09559733	1.92362691	0.30471646
O	12.10555178	2.28715480	2.72355915
O	8.94010744	2.79169955	2.10445065
O	12.75523581	-0.36703017	1.08153225
O	7.31536502	0.08890406	4.27346873
O	7.42048922	0.34954394	0.92752469
H	10.93590742	-3.29790186	1.74685850
B	9.86503450	-0.93063877	4.08601227
B	10.74907619	-1.60839435	2.67368650
B	8.96720243	-1.36559770	2.60135901
O	9.54118560	-1.71819790	5.26905963
B	9.97678742	-0.95042308	1.18308019
O	11.26956112	-2.96080580	2.60766596
O	8.05001624	-2.48683434	2.75053682
O	10.05367393	-1.77959689	-0.01232610
H	10.93785569	-1.58173621	-0.38816698

H	7.38928567	1.30880236	0.73402787
C	9.48363918	2.97139570	0.88358002
F	8.50142775	3.49698087	0.00698543
H	11.71540497	3.06394657	2.27038897
H	11.07810032	1.15089475	5.78003634
H	13.08809235	0.55388509	1.01592287
H	8.72380334	-1.28382750	5.60657253
H	8.34924905	-2.90421935	3.59168397
H	6.84084819	-0.67665694	3.87673939
O	12.60710806	-0.29535529	4.51024218
F	10.41364934	4.08817725	0.94332260
H	13.20874009	0.39807322	4.16827063

Full Structure Model

B	10.15980135	0.84130150	4.23769295
B	10.02051420	0.96177166	1.39389812
B	11.09379991	1.34778550	2.77642402
B	9.32285272	1.51991925	2.84546883
B	11.39727113	-0.07891761	1.75123265
B	8.57656421	0.16948167	3.70524412
B	8.48861840	0.22324826	1.92577006
B	11.46372227	-0.19458711	3.54593532
O	10.25373992	1.39206930	5.57515991
O	9.82711525	2.13613075	0.49298370
O	11.98521916	2.47772394	2.70761641
O	8.85930751	2.88354963	2.45171684

O	12.52307139	-0.22589488	0.85944380
O	7.43984764	0.32955100	4.58030387
O	7.22327202	0.48467757	1.28776126
H	10.90561051	-3.12990936	1.56014048
B	9.93666727	-0.94077548	4.14293646
B	10.71783061	-1.51370271	2.61583974
B	8.93099182	-1.29149142	2.71858643
O	9.93328829	-1.65944814	5.38522198
B	9.82085626	-0.78161505	1.23633201
O	11.27148747	-2.82295234	2.41870835
O	8.11512355	-2.52503344	2.57006013
O	9.79530136	-1.55935952	0.01373016
H	10.66121397	-1.37890537	-0.41222802
H	7.28175476	1.34217488	0.81799614
F	6.58266741	-4.07187360	2.85392118
F	7.96495809	3.42957580	0.43942726
H	11.47861182	3.25233489	2.38781232
H	9.32424349	1.46022163	5.88310144
H	13.00652706	0.62617694	0.88444732
H	10.22247482	-1.00578547	6.05925699
F	7.20326518	-2.89574551	4.61158577
H	6.66707091	0.48512425	3.99753694
O	12.65141053	-0.38385628	4.41675496
F	14.42058207	0.46030100	3.27293347
C	13.87348685	-0.57770580	4.01600546
F	14.70393867	-0.70407129	5.12504894

C	7.04537611	-2.82069411	3.24799400
F	5.96954203	-1.96116088	3.05063756
C	9.16332276	3.10734403	1.15474564
F	9.88479304	4.33011229	1.04765589

Monodentate Model

Fig. S1 Mulliken charges on boron atoms for monodentate model

Fig. S2 Mulliken charges on oxygen atoms for monodentate model

Fig. S3 Mulliken charges on hydrogen atoms for monodentate model

Bidentate Model

Fig. S4 Mulliken charges on boron atoms for bidentate model

Fig. S5 Mulliken charges on oxygen atoms for bidentate model

Fig. S6 Mulliken charges on hydrogen atoms for bidentate model

Full Structure Model

Fig. S7 Mulliken charges on boron atoms for full structure model

Fig. S8 Mulliken charges on oxygen atoms for full structure model

Fig. S9 Mulliken charges on hydrogen atoms for full structure model

Fig. S10 Rietveld plot for as-synthesized $\mathrm{ZnB}_{12}(\mathrm{OH})_{12}$, with green arrows designating the small peaks which corresponding to an unidentified impurity phase

Fig. S11 CIF of $\mathrm{ZnB}_{12} \mathrm{~F}_{12}$, determined through refinement of the powder pattern of assynthesized $\mathrm{ZnB}_{12}(\mathrm{OH})_{12}$

Table S1 Reliability Factors for Refinement

Reliability Factors	
$\mathbf{R}_{\mathbf{w p}}$	12.9810467
$\mathbf{R}_{\text {exp }}$	3.92036972
$\mathbf{R}_{\mathbf{p}}$	10.0065068
$\mathbf{G O F}$	3.31117921
\mathbf{R}_{B}	8.364317

Table S2 Crystallographic Information for $\mathrm{ZnB}_{12} \mathrm{~F}_{12}$

Lattice Parameters	
Crystal System	Monoclinic
Space Group	C2/m
a	$11.8767(3)$
b	$9.3221(2)$
\mathbf{c}	$12.0457(3)$
$\boldsymbol{\beta}$	$90.082(6)$
Cell Volume	$1333.09(8)$
Phase Density	$2.2975(1)$

Table S3. Atomic positions for one $\mathrm{ZnB}_{12} \mathrm{~F}_{12}$ moiety ($\mathbf{3}$ zinc ions and one boron cluster)

Listing of all 32 visible atoms:

Orthogonal Coordinates [Å]

Elmt Label xor yor zor
$\begin{array}{lllll}B & B 1 & 2.63149 & -9.75698 & 4.18518\end{array}$
$\begin{array}{lllll}\text { B } & \text { B17 } & 0.90676 & -9.84821 & 4.67223\end{array}$
$\begin{array}{lllll}\text { B } & \text { B19 } & 0.03369 & -10.82450 & 3.44986\end{array}$

B \quad B2 $\quad 1.85292-9.86305$
1.39107
$\begin{array}{lllll}\text { B } & \text { B21 } & 0.11923 & -9.95475 & 1.88065\end{array}$
$\begin{array}{lllll}\text { B } & \text { B22 } & -0.08030 & -9.03219 & 3.40770\end{array}$
$\begin{array}{lllll}\text { B } & \text { B3 } & 2.82910 & -10.67664 & 2.66046\end{array}$
$\begin{array}{lllll}\text { B } & \text { B4 } & 2.72855 & -8.88362 & 2.61450\end{array}$
$\begin{array}{lllll}\text { B } & \text { B5 } & 1.22149 & -11.33509 & 2.20238\end{array}$
$\begin{array}{lllll}\text { B } & \text { B6 } & 1.53322 & -8.37646 & 3.86045\end{array}$
$\begin{array}{lllll}B & B 7 & 1.05132 & -8.44280 & 2.14152\end{array}$
$\begin{array}{lllll}B & \text { B8 } & 1.70567 & -11.26850 & 3.92943\end{array}$

F	F10	2.18342	-10.08676	-0.01525
F	F11	4.10309	-11.57334	2.45887
F	F12	3.88287	-8.18605	2.37220
F	F13	1.09575	-12.57833	1.52424
F	F14	1.66027	-7.13308	4.54323
F	F15	0.77258	-7.57612	1.31680
F	F16	1.97333	-12.46135	4.65383
F	F18	0.35561	-9.88652	6.20776
F	F20	-1.06358	-11.84663	3.91789
F	F23	-0.87272	-10.24841	0.84778
F	F24	-1.25316	-8.45772	3.82257
F	F26	6.30118	-9.90268	3.28545
F	F27	5.57406	-9.42550	0.79998
F	F28	7.70649	-7.98381	1.29244
F	F29	5.23820	-6.41326	0.17483
F	F30	6.11578	-6.29628	3.30442
F	F9	3.90345	-9.69886	5.20587
Zn	Zn25	5.76756	-8.22414	1.71021

Water Adsorption Studies

Water isotherms were collected on a Micromeritics 3Flex, and the water uptake in g.g. ${ }^{-1}$ units is calculated as [(adsorbed amount of water)/(amount of adsorbent)]. Prior to the water adsorption measurements, water (analyte) was flash frozen under liquid nitrogen and then evacuated under dynamic vacuum at least 3 times to remove any gases in the water reservoir. The temperature was controlled with a Micromeritics ISO Controller. Prior to measurement, the sample was activated under dynamic vacuum on SmartVapPrep (SVP) at $120^{\circ} \mathrm{C}$ for 24 hours.

Fig. S12 $\mathrm{H}_{2} \mathrm{O}$ sorption isotherm for an activated sample of $\mathrm{ZnB}_{12}(\mathrm{OH})_{12}$

Rehydration in Humidity Chamber

50 mg of freshly activated material was placed on a weigh boat on top of a stand in an airtight chamber. The bottom of the chamber was lined with large filter papers and then filled with water to create a humid environment. The humidity within the chamber was measured to be 85% RH with a SmartPro Digital Hygrometer. The sample was left in the saturated chamber for 48 h and then removed, lyophilized and the PXRD pattern was measured. The sample was then returned to the chamber for 6 more days and the analysis was repeated, showing negligible changes in the PXRD pattern.

Fig. S13 PXRD patterns at various time points of activated $\mathrm{ZnB}_{12}(\mathrm{OH})_{12}$ in a humidity chamber

Rehydration in $\mathrm{H}_{2} \mathrm{O}$

35 mg of freshly activated material was stirred as a slurry in 10 mL MilliQ $\mathrm{H}_{2} \mathrm{O}$. After 48 hours, the sample was centrifuged, lyophilized, and then the PXRD pattern was measured. It was then returned to 10 mL of fresh MilliQ $\mathrm{H}_{2} \mathrm{O}$ for 3 more days and then analyzed in the same manner, showing full reversion back to the as-synthesized pattern, except for the presence of a small peak at 20° (marked with an asterisk).

Fig. $\mathbf{S 1 4}$ PXRD patterns at various time points of activated $\mathrm{ZnB}_{12}(\mathrm{OH})_{12}$ stirred in $\mathrm{H}_{2} \mathrm{O}$

Solvent Exchange with Acetone

16 mg of as-synthesized material was vigorously stirred as a slurry in 5 ml of dry acetone. Every 24 hours the sample was centrifuged, the solvent was removed, and a fresh portion of acetone was added. After 72 hours, the sample was centrifuged, the powder was air-dried overnight, and the PXRD pattern and TGA were measured.

Fig. S15 PXRD patterns of starting material and product after attempting solvent exchange with acetone

Fig. S16 TGA of material after attempted solvent exchange with acetone

Nitrogen adsorption isotherms

N_{2} isotherms were collected at 77 K on a Micromeritics Tristar II 3020. Prior to measurement, the as-synthesized sample was soaked in acetone, washed with acetone, and dried under vacuum at $80^{\circ} \mathrm{C}$ for 24 h . Then the sample was activated under dynamic vacuum on SmartVapPrep (SVP) at $120^{\circ} \mathrm{C}$ for 24 h . No porosity was observed.

Fig. S17 N_{2} adsorption isotherms for as-synthesized (left) and activated (right) samples

