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1. Optimization experiments 
 

Table S1. Optimization experiments toward FcB-cage. 

Entry HHTP  
 

Fc-[B(OH)2]2  

(1) 

 

Fc-[B(OMe)2]2  
(2)  
 

Solvent (mL) time  temp.  Yield 

1 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- MeOH (7 mL) 
1,4-dioxane (7 mL) 

24 h rt Recovery of 
starting 
material 

2 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- MeOH (7 mL) 
1,4-dioxane (7 mL) 

24 h 40°C Recovery of 
starting 
material 

3 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- MeOH (3 mL) 
1,4-dioxane (9 mL) 

24h rt Recovery of 
starting 
material 

4 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- MeOH (9 mL) 24h rt Recovery of 
starting 
material 

5 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- MeOH (9 mL) 72h rt Recovery of 
starting 
material 

6 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- EtOH (9 mL) 24h rt Recovery of 
starting 
material 

7 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- 1,4-dioxane (3 mL) 
Mesitylene (3 mL) 

24h rt Recovery of 
starting 
material 

8 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- 1,4-dioxane (3 mL) 
Mesitylene (3 mL) 

72h rt Recovery of 
starting 
material 

9 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- 1,4-dioxane (3 mL) 
Mesitylene (3 mL) 

72h 85°C Recovery of 
starting 
material 

10 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- Acetone (5 mL) 
1,4-dioxane (5 mL) 

72 h rt Recovery of 
starting 
material 

11 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- Acetone (2 mL) 
1,4-dioxane (2 mL) 

48h  rt Recovery of 
starting 
material 

12 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- Acetone (2 mL) 
1,4-dioxane (2 mL) 

48h  40°C Recovery of 
starting 
material 

13 0.06 
mmol 
(1 eq) 

0.09 
mmol 
(1.5 eq) 

- DMF (6 mL) 48h  rt 40% 

14 0.06 
mmol 
(1 eq) 

- 0.09 
mmol 
(1.5 eq) 
 

DMF (6 mL) 48h rt 68 % 

15 0.06 
mmol 
(1 eq) 

- 0.09 
mmol 
(1.5 eq) 
 

DMF (6 mL) 72h rt 67 % 

15 
 

0.06 
mmol 
(1 eq) 

- 0.09 
mmol 
(1.5 eq) 
 

MeOH (6 mL) 48h rt Recovery of 
starting 
material 
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Figure S1. 1H NMR (400 MHz, DMSO-d6) spectrum of the product obtained in the reaction of 1 and 

HHTP in DMF (see discussion in the main text and data in Table S1, entry 14). The signals corresponding 

to the building blocks of hydrolyzed FcB-cage are marked with colors. 

HDHC
HE

HA

HB
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2. Spectral characterization 

 

 

Figure S2. 1H NMR (400 MHz, DMSO-d6) spectrum of FcB-cage after the hydrolysis experiment. 
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Figure S3. ESI-HRMS spectrum of FcB-cage.
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Figure S4. FT-IR spectrum of FcB-cage (top) and the inset presenting crucial vibrations (bottom). 
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Figure S5. (top) Scatter matrix of the wavenumber values of anhydride and borate ester regarding the 

FT-IR analyses of FcB-cage, (bottom) Decision surface of rbf SVM classifier. In order to reduce 

dimensionality of the data to just two dimensions, so that it could be represented as a two-dimensional 

graph, principal component analysis (PCA) was applied to the data).  
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3. Additional discussion on a machine learning technique 

 

The details on this technique can be found in the following references: 

1. C. Cortes, V. Vapnik, Support-Vector Networks". Machine Learning, 1995, 20 (3): 273–297. 

doi:10.1007/BF00994018. 

2. T. Hastie, R. Tibshirani, J H. Friedman. The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction. New York: Springer, 2001, ISBN: 978-1-0716-2122-6. 

3. B. Schölkopf, A. Smola, Support Vector Machines and Kernel Algorithms. Encyclopaedia of 

Biostatistics, 2005, 5328-5335, ISBN: 978-0470849071. 

4. F. Pedregosa, Scikit-learn: Machine Learning in Python, Journal of Machine Learning, 2011, 12, 

2825-2830. 

5. Support Vector Machines - scikit-learn 1.0.2 documentation 

 
Machine learning can be categorized into supervised and unsupervised learning. In the case of our 

work, supervised learning was implemented - machine learning, where labelled examples are used. 
The libraries used were as follows: Scikit-learn - Python library for machine learning, Pandas  - Python 
library for data manipulation and analysis, Matplotlib - Python figure plotting library. The algorithm 
predicts the output variable based on each input variable. Such a machine learning algorithm can either 
be a classification or regression algorithm. In the case of classification, the output variable is the 
discrete class value (the output = 1 means yes, the output = 0 means no). In regression, on the other 
hand, the output variable is continuous. For example, for a set of (x, y) data, a linear function was fit 
to the data through linear regression. That way, for each x value, a y value can be determined. 

The output variable in our work was whether the product was anhydride or ester. It means that a 
classification algorithm needs to be used. The algorithm will therefore be called as a classifier. The 
input variables were the transmittance values of the infrared spectroscopy for a given wavelength 
value. In machine learning, the data is always divided into training and test sets. Training sets are used 
by the classifier to learn how to classify output values for given input values. A test set is used to test 
the classifier on previously unseen data. 

The classifier used in the article was Support Vector Machine – SVM with Gaussian radial basis 
function as a kernel (Figure S6). SVM algorithm seeks, using the vectors, to find the best hyperplane 
that would separate/classify the data. Not all data can be easily separated by a hyperplane in two-
dimensional space. However, if a data were aimed to be transformed into a three-dimensional space, 
their separation could be possible. Kernel is a method that enables classification of the data using a 
hyperplane in a higher-dimensional space. 

 
 

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
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Figure S6. Hyperplane with margins that separates data (source: Support Vector Machines - scikit-learn 

1.0.2 documentation). 

 
However, directly transforming all the data into a three-dimensional space is not necessary. It 

is possible to find a linear decision boundary – hyperplane in the three-dimensional space while 
working only with data in the two-dimensional space. Such a possibility is called the kernel-trick. The 
kernel serves as the similarity function between two points in space because it computes the similarity 
between pairs of points in the high dimensional space. For the radial basis function kernel, the 
similarity between two points is an exponential Gaussian function: 

𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) = exp(−𝛾‖𝑥𝑖⃗⃗  ⃗ −𝑥𝑗⃗⃗  ⃗‖
2
) 

 
The gamma parameter, seen in the kernel function above, enables the control of the decision boundary 
should be. For small gamma values, the similarity boundaries of the set of points are big (Figure S7). It 
means that even points that are categorized otherwise can be incorporated into the boundaries set by 
the other points. However, large gamma values, although will not wrongfully incorporate as many 
points, may overfit the data. 
 

Rising gamma -----> 

 
Figure S7. The influence of gamma parameter on decision boundary. 

 
 

The other parameter is the regularisation parameter – C. For all kernels, this parameter is 
present because it is the parameter of the linear hyperplane itself. It tells how big the maximum margin 
criterion is. Big values of C mean that the maximum margin is small, and conversely, small values of C 
mean that the maximum margin is big (Figure S8). This parameter impacts just as much the decision 
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boundary as the gamma does. So as to not got through the work of finding the best values of the  two 
parameters, a tool in scikit-learn called GridSearch was utilized, which finds those values. 
 
 

Rising C -----> 

 
Figure S8. The influence of regularisation parameter on decision boundary. 
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4. Thermal properties        
 

 

Figure S9. TGA plot of FcB-cage with the ramp rate of 10 K·min−1. 
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5. SEM 
 

Table S2. EDX data for FcB-cage together with the EDX spectrum at the bottom. 

 

Element  Series  unn. C norm. C Atom. C Error (1 Sigma) 

                 [wt.%]  [wt.%]  [at.%]          [wt.%] 

------------------------------------------------------- 

Boron   K-series   6.37    6.63    8.58            2.06 

Carbon  K-series  59.20   61.59   71.77            7.78 

Oxygen  K-series  17.90   18.62   16.29            2.98 

Silicon K-series   0.16    0.17    0.08            0.04 

Iron    K-series  12.44   12.94    3.24            0.76 

Sodium  K-series   0.06    0.06    0.04            0.04 

------------------------------------------------------- 

          Total:  96.12  100.00  100.00 

 

 

Figure S10. EDX profile of FcB-cage. 
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6. Theoretical calculations 
 

Table S3. Computed total energy values and number of imaginary frequencies for the optimized 

structures (B97D/6-311++G(d,p)). 

 

Compound G / a.u   N. im. 
Freq. 

2 -2159.899907 0 
methanol -115.671980 0 
HHTP -1143.860885 0 
syn-2-HHTP -3072.423883 0 
anti-2-HHTP -3072.424613 0 
syn-2-HHTP2 -3984.967802 0 
anti-2-HHTP2 -3984.945905 0 
22-HHTP2 -5682.199009 0 
FcB-cage -7379.440269 0 
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27.4 kJmol-1 

 
 

13.5 kJmol-1 
 

 
 

20.8 kJmol-1 
 
 

 
Most preferred 

 
16.0 kJmol-1 

 

 
25.8 kJmol-1 

 
 

 
24.5 kJmol-1 

 
 

 
12.4 kJmol-1 

 

 
25.8 kJmol-1 

 

 
0.1 kJmol-1 

 

 
 

14.6 kJmol-1 
 

 
 

27.0 kJmol-1 
 

Figure S11. DFT-optimized structures of various conformers of 2. The free enthalpies (kJ·mol−1) are 

given with respect to the most stable conformation.  
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Scheme S1. Stepwise formation of 22-HHTP2 from the reaction of cis-2-HHTP2 with molecule 2. 

 

 

 

 
 

syn-2-HHTP anti-2-HHTP 

 
Syn-2-HHTP2 

 
Figure S12. DFT-optimized structures considered on the course of the Fc-cage formation (part 1). 
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anti-2-HHTP2 

 
22-HHTP2 – A1 

 
22-HHTP2 – A2 

 
22-HHTP2 

Figure S13. DFT-optimized structures considered on the course of the Fc-cage formation (part 2). 
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Figure S14. DFT-optimized FcB-cage dimer viewed from two perspectives. 
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Figure S15. τ-Constrained optimization performed at the B97D/6-311++G(d,p) level of theory. 

Comment: According to expectations, the most stable is the flat conformation. The τC-C-B-O constrained 

energy scan shows that there are two maxima corresponding to the perpendicular orientations of 

boronic ester groups with respect to Cp ring. The calculated rotation barrier is 33 kJmol-1, thus it is 

higher with respect to phenyl boronic acid (17 kJmol-1, Cryst. Growth Des. 2012, 12, 3720−3734)., It 

originates from sterical hindrance of anti-oriented B-OMe group and Cp ring. The close proximity of Cp 

ring and syn-oriented B-OMe group does not produce such congestion and therefore the energy of 

second maximum of 16 kJmol-1 is comparable to the rotation barrier in phenylboronic acid.  
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7. PXRD experiments 

 

Figure S16. PXRD pattern of FcB-cage (background subtracted). 

 

 

Figure S17. Results of the Pawley refinement for the monoclinic unit cell.  

 



S20 
 

 

Figure S18. Results of the Pawley refinement for the triclinic unit cell. 

Table S4. Summary of the Pawley refinement for proposed monoclinic and triclinic unit cells. 

Crystal system monoclinic triclinic  

Space group P2 P1 

a / Å  21.016 17.27 

b / Å  18.078 12.56 

c / Å  10.270 11.87 

α / °  90 58.2 

β / °  115.48 118.1 

γ / °  90 117.3 

Volume / Å3 3522.4 1851.8 

Radiation CuKα  

(λ = 1.54178) 

CuKα  

(λ = 1.54178) 

Data/parameters 1164/154 1164/137 

Rwp 9.7 13.0 

Rexp 5.6 8.3 

Χ2  3.0 2.6 

 



S21 
 

 

Figure S19. PXRD pattern of 1 together with its simulated powder pattern from X-ray crystal 

structure (M.Bolte, CSD Communication, 2011, REFCODE: OBEBUU, spacegroup: P21/c). 

 

 

Figure S20. PXRD pattern of HHTP (commercial sample) together with its simulated powder pattern 

from X-ray crystal structure (T.L.Andresen, F.C.Krebs, N.Thorup, K.Bechgaard, Chem.Mater., 2000, 12, 

2428, REFCODE: XEFSIK, spacegroup: P21/c). 


