Supplementary Information

Three rare-earth incorporating 6-peroxotantalo-4-selenate and catalytic activities for imidation reaction

Weixin Du, a## Yufeng Liu, b, c## Junjun Sun, a Haiying Wang, a Guoping Yang, *b Dongdi Zhang*a

a Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
b Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, P. R. China.
c Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou, 510640, P. R. China.
<table>
<thead>
<tr>
<th></th>
<th>STD-Eu</th>
<th>STD-Gd</th>
<th>STD-Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>CsKEuSe$_4$Ta6O${53}$H$_4$</td>
<td>CsKGdSe$_4$Ta6O${53}$H$_4$</td>
<td>CsKLuSe$_4$Ta6O${51}$H$_3$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2616.80</td>
<td>2622.09</td>
<td>2603.78</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>296.15</td>
<td>296.15</td>
<td>296.15</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1/c$</td>
<td>$P2_1/c$</td>
<td>$P2_1/c$</td>
</tr>
<tr>
<td>λ/Å</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>a/Å</td>
<td>12.3382(7)</td>
<td>12.3307(5)</td>
<td>12.2537(9)</td>
</tr>
<tr>
<td>b/Å</td>
<td>27.3560(15)</td>
<td>27.2604(11)</td>
<td>27.3082(2)</td>
</tr>
<tr>
<td>c/Å</td>
<td>14.0173(8)</td>
<td>14.0160(6)</td>
<td>13.9677(11)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>113.7870(10)</td>
<td>113.8540(10)</td>
<td>114.1800(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume / Å3</td>
<td>4329.3(4)</td>
<td>4308.9(3)</td>
<td>4263.9(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D_c/ g cm$^{-3}$</td>
<td>3.875</td>
<td>3.901</td>
<td>3.970</td>
</tr>
<tr>
<td>μ/ mm$^{-1}$</td>
<td>20.945</td>
<td>21.128</td>
<td>22.111</td>
</tr>
<tr>
<td>F(000)</td>
<td>4444.0</td>
<td>4448.0</td>
<td>4476.0</td>
</tr>
<tr>
<td>Crystal size / mm3</td>
<td>$0.14 \times 0.12 \times 0.11$</td>
<td>$0.34 \times 0.17 \times 0.13$</td>
<td>$0.21 \times 0.16 \times 0.13$</td>
</tr>
<tr>
<td>2θ range for data collection /°</td>
<td>3.508 to 50.198</td>
<td>3.51 to 50.198</td>
<td>2.982 to 50.196</td>
</tr>
<tr>
<td></td>
<td>$-14 \leq h \leq 6$</td>
<td>$-14 \leq h \leq 14$</td>
<td>$-14 \leq h \leq 14$</td>
</tr>
<tr>
<td></td>
<td>$-32 \leq k \leq 32$</td>
<td>$-21 \leq k \leq 32$</td>
<td>$-32 \leq k \leq 25$</td>
</tr>
<tr>
<td></td>
<td>$-16 \leq l \leq 16$</td>
<td>$-16 \leq l \leq 16$</td>
<td>$-14 \leq l \leq 16$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>22421</td>
<td>22215</td>
<td>22026</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>$R_{int} = 0.0529$,</td>
<td>$R_{int} = 0.0422$,</td>
<td>$R_{int} = 0.0578$,</td>
</tr>
<tr>
<td></td>
<td>$R_{sigma} = 0.0610$</td>
<td>$R_{sigma} = 0.0478$</td>
<td>$R_{sigma} = 0.0658$</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>7699/0/318</td>
<td>7652/0/318</td>
<td>7569/0/318</td>
</tr>
<tr>
<td>GOF on F^2</td>
<td>1.023</td>
<td>1.023</td>
<td>1.017</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>$^aR_1, ^bW_2 [l > 2\sigma (l)]$</td>
<td>$R_1 = 0.0421$, $wR_2 = 0.0920$</td>
<td>$R_1 = 0.0388$, $wR_2 = 0.0910$</td>
<td>$R_1 = 0.0437$, $wR_2 = 0.0968$</td>
</tr>
<tr>
<td>$^aR_1, ^bW_2$ [all data]</td>
<td>$R_1 = 0.0606$, $wR_2 = 0.1007$</td>
<td>$R_1 = 0.0493$, $wR_2 = 0.0963$</td>
<td>$R_1 = 0.0633$, $wR_2 = 0.1059$</td>
</tr>
</tbody>
</table>

$aR_1 = \sum |F_o| - |F_c| / \sum |F_o|$. $^bW_2 = \{\sum [w(F_o^2 - F_c^2)]^2 / \sum [w(F_o^2)]^2\}^{1/2}$.
Figure S1. Composition of compounds STD-Eu, STD-Gd and STD-Lu.

Figure S2. Representation of Ln coordination environment. Ln, lavender; O, red.

Figure S3. Connection mode of Ta atoms. Ta, teal; Se, lime; O, red; peroxo bond, red.

Figure S4. Ball-and-stick representation of polyanion cis-\(\text{Se}_4\text{(TaO}_2\text{)}_6\)^−. Ta, teal; Se, lime; O, red; peroxo bond, red.
Table S2. O_{axial}−Ta−O_{axial} angles in polyanions STD-Eu, STD-Gd and STD-Lu.

<table>
<thead>
<tr>
<th>Polyanion</th>
<th>STD-Eu</th>
<th>STD-Gd</th>
<th>STD-Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>O22-Ta1-O25</td>
<td>170.45°</td>
<td>170.10°</td>
<td>170.60°</td>
</tr>
<tr>
<td>O26-Ta2-O27</td>
<td>169.27°</td>
<td>168.72°</td>
<td>168.66°</td>
</tr>
<tr>
<td>O19-Ta3-O20</td>
<td>174.48°</td>
<td>173.88°</td>
<td>172.90°</td>
</tr>
<tr>
<td>O13-Ta4-O22</td>
<td>174.72°</td>
<td>174.54°</td>
<td>174.14°</td>
</tr>
<tr>
<td>O23-Ta5-O26</td>
<td>161.14°</td>
<td>160.47°</td>
<td>159.81°</td>
</tr>
<tr>
<td>O19-Ta6-O21</td>
<td>176.96°</td>
<td>176.62°</td>
<td>177.09°</td>
</tr>
<tr>
<td>Bond</td>
<td>Length</td>
<td>Bond</td>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Ta1-O22</td>
<td>1.894</td>
<td>1.898</td>
<td>1.889</td>
</tr>
<tr>
<td>Ta1-O16</td>
<td>1.982</td>
<td>1.977</td>
<td>1.969</td>
</tr>
<tr>
<td>Ta1-O18</td>
<td>1.985</td>
<td>1.999</td>
<td>1.991</td>
</tr>
<tr>
<td>Ta1-O33</td>
<td>2.054</td>
<td>2.057</td>
<td>2.054</td>
</tr>
<tr>
<td>Ta1-O24</td>
<td>2.077</td>
<td>2.061</td>
<td>2.063</td>
</tr>
<tr>
<td>Ta1-O25</td>
<td>2.063</td>
<td>2.067</td>
<td>2.052</td>
</tr>
<tr>
<td>Ta1-O30</td>
<td>2.069</td>
<td>2.086</td>
<td>2.067</td>
</tr>
<tr>
<td>Ta2-O26</td>
<td>1.847</td>
<td>1.842</td>
<td>1.842</td>
</tr>
<tr>
<td>Ta2-O6</td>
<td>1.986</td>
<td>1.995</td>
<td>1.985</td>
</tr>
<tr>
<td>Ta2-O5</td>
<td>1.966</td>
<td>1.973</td>
<td>1.971</td>
</tr>
<tr>
<td>Ta2-O9</td>
<td>2.051</td>
<td>2.054</td>
<td>2.058</td>
</tr>
<tr>
<td>Ta2-O33</td>
<td>2.102</td>
<td>2.099</td>
<td>2.100</td>
</tr>
<tr>
<td>Ta2-O32</td>
<td>2.094</td>
<td>2.105</td>
<td>2.092</td>
</tr>
<tr>
<td>Ta2-O27</td>
<td>2.143</td>
<td>2.143</td>
<td>2.139</td>
</tr>
<tr>
<td>Ta3-O19</td>
<td>1.897</td>
<td>1.891</td>
<td>1.883</td>
</tr>
<tr>
<td>Ta3-O8</td>
<td>1.978</td>
<td>1.967</td>
<td>1.953</td>
</tr>
<tr>
<td>Ta3-O12</td>
<td>1.979</td>
<td>1.984</td>
<td>1.975</td>
</tr>
<tr>
<td>Ta3-O30</td>
<td>2.030</td>
<td>2.033</td>
<td>2.041</td>
</tr>
<tr>
<td>Ta3-O32</td>
<td>2.048</td>
<td>2.045</td>
<td>2.052</td>
</tr>
<tr>
<td>Ta3-O20</td>
<td>2.099</td>
<td>2.088</td>
<td>2.084</td>
</tr>
<tr>
<td>Ta3-O33</td>
<td>2.091</td>
<td>2.097</td>
<td>2.095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Ta4-O22</td>
<td>1.921</td>
<td>1.915</td>
<td>1.921</td>
</tr>
<tr>
<td>Ta4-O14</td>
<td>1.976</td>
<td>1.988</td>
<td>1.979</td>
</tr>
<tr>
<td>Ta4-O10</td>
<td>1.993</td>
<td>1.999</td>
<td>1.985</td>
</tr>
<tr>
<td>Ta4-O31</td>
<td>2.040</td>
<td>2.037</td>
<td>2.031</td>
</tr>
<tr>
<td>Ta4-O15</td>
<td>2.052</td>
<td>2.049</td>
<td>2.059</td>
</tr>
<tr>
<td>Ta4-O29</td>
<td>2.086</td>
<td>2.072</td>
<td>2.073</td>
</tr>
<tr>
<td>Ta4-O13</td>
<td>2.092</td>
<td>2.089</td>
<td>2.090</td>
</tr>
<tr>
<td>Ta5-O28</td>
<td>1.920</td>
<td>1.924</td>
<td>1.912</td>
</tr>
<tr>
<td>Ta5-O11</td>
<td>1.956</td>
<td>1.964</td>
<td>1.931</td>
</tr>
<tr>
<td>Ta5-O2</td>
<td>1.992</td>
<td>1.965</td>
<td>1.980</td>
</tr>
<tr>
<td>Ta5-O26</td>
<td>2.001</td>
<td>2.006</td>
<td>2.006</td>
</tr>
<tr>
<td>Ta5-O17</td>
<td>2.049</td>
<td>2.041</td>
<td>2.035</td>
</tr>
<tr>
<td>Ta5-O31</td>
<td>2.114</td>
<td>2.112</td>
<td>2.116</td>
</tr>
<tr>
<td>Polyonion</td>
<td>STD-Eu</td>
<td>STD-Gd</td>
<td>STD-Lu</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>O\textsubscript{peroxo}–Ta–O\textsubscript{peroxo} angle (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₁₆-Ta₁-O₁₈</td>
<td>44.69</td>
<td>44.15</td>
<td>44.31</td>
</tr>
<tr>
<td>O₅-Ta₂-O₆</td>
<td>44.12</td>
<td>43.96</td>
<td>43.87</td>
</tr>
<tr>
<td>O₈-Ta₃-O₁₂</td>
<td>44.84</td>
<td>45.86</td>
<td>44.45</td>
</tr>
<tr>
<td>O₁₀-Ta₄-O₁₄</td>
<td>44.04</td>
<td>44.01</td>
<td>44.50</td>
</tr>
<tr>
<td>O₂-Ta₅-O₁₁</td>
<td>42.75</td>
<td>44.20</td>
<td>43.55</td>
</tr>
<tr>
<td>O₃-Ta₆-O⁷</td>
<td>44.74</td>
<td>44.94</td>
<td>45.76</td>
</tr>
<tr>
<td>Average value:</td>
<td>44.19</td>
<td>44.52</td>
<td>44.41</td>
</tr>
<tr>
<td>O\textsubscript{apical}–Ta–O\textsubscript{apical} angle (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂₂-Ta₁-O₂₅</td>
<td>170.45</td>
<td>170.10</td>
<td>170.60</td>
</tr>
<tr>
<td>O₂₆-Ta₂-O₂₇</td>
<td>169.27</td>
<td>168.72</td>
<td>168.66</td>
</tr>
<tr>
<td>O₁₉-Ta₃-O₂₀</td>
<td>174.48</td>
<td>173.88</td>
<td>172.90</td>
</tr>
<tr>
<td>O₁₃-Ta₄-O₂₂</td>
<td>174.72</td>
<td>174.54</td>
<td>174.13</td>
</tr>
<tr>
<td>O₂₃-Ta₅-O₂₆</td>
<td>161.14</td>
<td>160.47</td>
<td>159.81</td>
</tr>
<tr>
<td>O₁₉-Ta₆-O₂₁</td>
<td>176.95</td>
<td>176.62</td>
<td>177.09</td>
</tr>
<tr>
<td>Average value:</td>
<td>171.16</td>
<td>170.72</td>
<td>170.53</td>
</tr>
<tr>
<td>Ta–O\textsubscript{apical}–Ta angle (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta₁-O₂₂-Ta₄</td>
<td>163.36</td>
<td>164.49</td>
<td>164.05</td>
</tr>
<tr>
<td>Ta₂-O₂₆-Ta₅</td>
<td>166.73</td>
<td>167.73</td>
<td>167.51</td>
</tr>
<tr>
<td>Ta₃-O₁₉-Ta₆</td>
<td>162.41</td>
<td>164.11</td>
<td>162.85</td>
</tr>
<tr>
<td>Average value:</td>
<td>164.23</td>
<td>165.44</td>
<td>164.80</td>
</tr>
</tbody>
</table>
Figure S5. Se–O, Ta–O (left) bond lengths and the average Ln–O (right) bond length in STD-Eu, STD-Gd and STD-Lu.
Table S5. BVS calculation results.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta1</td>
<td>5.45</td>
<td>5.41</td>
<td>5.52</td>
<td>O15</td>
<td>2.01</td>
<td>1.99</td>
<td>2.02</td>
</tr>
<tr>
<td>Ta2</td>
<td>5.42</td>
<td>5.38</td>
<td>5.43</td>
<td>O16#</td>
<td>0.84</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>Ta3</td>
<td>5.47</td>
<td>5.51</td>
<td>5.56</td>
<td>O17</td>
<td>1.97</td>
<td>1.99</td>
<td>2.01</td>
</tr>
<tr>
<td>Ta4</td>
<td>5.36</td>
<td>5.38</td>
<td>5.40</td>
<td>O18#</td>
<td>0.84</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td>Ta5</td>
<td>5.34</td>
<td>5.38</td>
<td>5.46</td>
<td>O19</td>
<td>2.12</td>
<td>2.15</td>
<td>2.14</td>
</tr>
<tr>
<td>Ta6</td>
<td>5.46</td>
<td>5.43</td>
<td>5.37</td>
<td>O20</td>
<td>1.94</td>
<td>1.94</td>
<td>1.96</td>
</tr>
<tr>
<td>Se1</td>
<td>4.02</td>
<td>3.99</td>
<td>3.94</td>
<td>O21</td>
<td>1.91</td>
<td>1.91</td>
<td>1.93</td>
</tr>
<tr>
<td>Se2</td>
<td>4.08</td>
<td>4.06</td>
<td>4.13</td>
<td>O22</td>
<td>2.07</td>
<td>2.07</td>
<td>2.08</td>
</tr>
<tr>
<td>Se3</td>
<td>4.19</td>
<td>4.14</td>
<td>4.17</td>
<td>O23</td>
<td>1.84</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Se4</td>
<td>4.16</td>
<td>4.09</td>
<td>4.07</td>
<td>O24</td>
<td>1.99</td>
<td>1.98</td>
<td>1.98</td>
</tr>
<tr>
<td>Ln</td>
<td>3.20</td>
<td>3.23</td>
<td>3.11</td>
<td>O25</td>
<td>1.99</td>
<td>1.96</td>
<td>1.94</td>
</tr>
<tr>
<td>O1</td>
<td>1.91</td>
<td>1.93</td>
<td>1.87</td>
<td>O26</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>O2#</td>
<td>0.82</td>
<td>0.88</td>
<td>0.85</td>
<td>O27</td>
<td>1.92</td>
<td>1.94</td>
<td>2.39</td>
</tr>
<tr>
<td>O3#</td>
<td>0.85</td>
<td>0.85</td>
<td>0.82</td>
<td>O28</td>
<td>1.81</td>
<td>1.78</td>
<td>1.80</td>
</tr>
<tr>
<td>O4</td>
<td>2.15</td>
<td>2.11</td>
<td>2.06</td>
<td>O29ψ</td>
<td>1.29</td>
<td>1.30</td>
<td>1.29</td>
</tr>
<tr>
<td>O5#</td>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>O30ψ</td>
<td>1.41</td>
<td>1.37</td>
<td>1.39</td>
</tr>
<tr>
<td>O6#</td>
<td>0.83</td>
<td>0.82</td>
<td>0.83</td>
<td>O31</td>
<td>1.98</td>
<td>1.97</td>
<td>1.97</td>
</tr>
<tr>
<td>O7#</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
<td>O32ψ</td>
<td>1.33</td>
<td>1.32</td>
<td>1.33</td>
</tr>
<tr>
<td>O8#</td>
<td>0.85</td>
<td>0.88</td>
<td>0.91</td>
<td>O33</td>
<td>1.94</td>
<td>1.92</td>
<td>1.93</td>
</tr>
<tr>
<td>O9</td>
<td>2.02</td>
<td>1.96</td>
<td>1.99</td>
<td>O34‡</td>
<td>0.37</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>O10#</td>
<td>0.82</td>
<td>0.81</td>
<td>0.84</td>
<td>O35‡</td>
<td>0.31</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>O11#</td>
<td>0.90</td>
<td>0.89</td>
<td>0.97</td>
<td>O36‡</td>
<td>0.39</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>O12#</td>
<td>0.85</td>
<td>0.84</td>
<td>0.86</td>
<td>O37‡</td>
<td>0.41</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>O13</td>
<td>1.99</td>
<td>1.99</td>
<td>2.04</td>
<td>O42‡</td>
<td>0.35</td>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>O14#</td>
<td>0.86</td>
<td>0.83</td>
<td>0.85</td>
<td>O43‡</td>
<td>0.43</td>
<td>0.45</td>
<td>0.42</td>
</tr>
</tbody>
</table>

#, ‡ and ψ represent peroxy oxygen atoms, H₂O and OH ligands.
Figure S6. Ball-and-stick representation of polyanion **STD-Eu**, highlighting the protonated oxygen atoms. Ta, teal; Se, lime; Eu, lavender; H$_2$O, turquoise; OH, pink; O, red; peroxo bond, red.

Figure S7. TG curves of compounds **STD-Eu**, **STD-Gd** and **STD-Lu**.

The TG curves of compounds **STD-Eu**, **STD-Gd** and **STD-Lu** show similar two-step weight loss behaviors in the temperature range of 25-1000 °C. The total weight loss of 32.62% (calcd 32.79%) for **STD-Eu** and 32.67% (calcd 32.73%) for **STD-Gd** can be attributed to 14 lattice water molecules, 9 coordinated water molecules and four SeO$_2$ molecules. However, the slightly smaller total weight loss of 31.86% (calcd 31.57%) for **STD-Lu** corresponds to 12 lattice water molecules, 9 coordinated water molecules and four SeO$_2$ molecules.
Figure S8. IR spectra for STD-Eu, STD-Gd, STD-Lu, Na$_2$SeO$_3$ and Ta$_6$ in the region from 4000 to 450 cm$^{-1}$.

Figure S9. PXRD patterns (black) and simulated (red) of STD-Eu.

Figure S10. PXRD patterns (black) and simulated (red) of STD-Gd.
Figure S11. PXRD patterns (black) and simulated (red) of STD-Lu.

Figure S12. Excitation spectrum for STD-Eu ($\lambda_{em} = 613$ nm).

Figure S13. Corresponding color coordinates of STD-Eu.
Experimental section

Catalysis. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate. All compounds were characterized by 1H NMR, 13C NMR and mass spectrometry, which were consistent with those reported in related literatures. NMR spectra were determined on Brucker ADVANCE III spectrometer at 500 MHz and 126 MHz. 1H NMR peaks were labeled as singlet (s), doublet (d), triplet (t), and multiplet (m). The coupling constants, J, are reported in Hertz (Hz). GC analysis was performed on Agilent 7890B equipped with a capillary column (HP-5, 30 m × 0.25 μm) using a flame ionization detector.

Characterization of substrates and products

![Structure of 2-phenylisoindoline-1,3-dione (3a)]

2-phenylisoindoline-1,3-dione (3a)51

1H NMR (500 MHz, CDCl$_3$) δ 7.94 (dt, $J = 6.7$, 3.4 Hz, 2H), 7.78 (dd, $J = 5.3$, 3.1 Hz, 2H), 7.51 (t, $J = 7.7$ Hz, 2H), 7.47-7.37 (m, 3H);

13C NMR (126 MHz, CDCl$_3$) δ 167.34, 134.47, 131.76, 129.18, 128.17, 126.63, 123.80, 100.00.

![Structure of 2-(m-tolyl)isoindoline-1,3-dione (3b)]

2-(m-tolyl)isoindoline-1,3-dione (3b)51

1H NMR (500 MHz, CDCl$_3$) δ 166.85, 134.67, 134.59, 132.82, 131.51, 130.08, 128.21, 126.66, 124.62, 123.92;

13C NMR (126 MHz, CDCl$_3$) δ 176.50, 139.29, 131.86, 129.57, 129.06, 127.17, 123.65, 28.44, 21.38.
2-(3-methoxyphenyl)isoindoline-1,3-dione (3c)52

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.92 (dd, \(J = 5.4, 3.1\) Hz, 2H), 7.78-7.74 (m, 2H), 7.39 (t, \(J = 7.7\) Hz, 1H), 7.25-7.19 (m, 3H), 2.41 (s, 3H);

\textbf{13C NMR} (126 MHz, CDCl\textsubscript{3}) \(\delta\) 167.42, 139.16, 134.42, 131.78, 129.09, 128.99, 127.32, 123.81, 123.74, 21.47.

\hrule

2-(3-chlorophenyl)isoindoline-1,3-dione (3d)52

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.95 (dd, \(J = 5.3, 3.0\) Hz, 2H), 7.79 (dd, \(J = 5.3, 3.0\) Hz, 2H), 7.41 (t, \(J = 8.1\) Hz, 1H), 7.03 (d, \(J = 7.9\) Hz, 1H), 7.00-6.93 (m, 2H), 3.84 (s, 3H);

\textbf{13C NMR} (126 MHz, CDCl\textsubscript{3}) \(\delta\) 167.27, 160.05, 134.46, 132.65, 131.73, 129.85, 123.79, 118.91, 114.14, 112.37, 55.46.

\hrule

2-(3-bromophenyl)isoindoline-1,3-dione (3e)52

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.93 (dd, \(J = 4.9, 3.3\) Hz, 2H), 7.79 (dd, \(J = 5.1, 3.1\) Hz, 2H), 7.64 (s, 1H), 7.52 (d, \(J = 7.8\) Hz, 1H), 7.42 (d, \(J = 7.9\) Hz, 1H), 7.37 (t, \(J = 7.9\) Hz, 1H);

\textbf{13C NMR} (126 MHz, CDCl\textsubscript{3}) \(\delta\) 166.84, 134.68, 132.94, 131.49, 131.12, 130.35, 129.48, 125.12, 123.93, 122.41.

\hrule

2-(3-(trifluoromethyl)phenyl)isoindoline-1,3-dione (3f)52
1H NMR (500 MHz, CDCl$_3$) δ 7.92 (dd, J = 5.3, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 2.8 Hz, 3H), 7.68 (d, J = 7.2 Hz, 1H), 7.66-7.60 (m, 2H);

13C NMR (126 MHz, CDCl$_3$) δ 166.80 (s), 134.73 (s), 132.36 (s), 131.65-131.19 (m), 129.70 (s), 129.66 (s), 124.75 (s), 124.62 (d, J = 3.7 Hz), 123.91 (s), 123.33 (q, J = 3.8 Hz), 122.58 (s).

5-methyl-2-phenylisoindoline-1,3-dione (3g)52

1H NMR (500 MHz, (CD$_3$)$_2$SO) δ 7.85 (d, J = 7.6 Hz, 1H), 7.79 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.55-7.50 (m, 2H), 7.47-7.41 (m, 3H), 2.52 (s, 3H);

13C NMR (126 MHz, (CD$_3$)$_2$SO) δ 167.55, 167.45, 146.18, 135.55, 132.41, 132.33, 129.36, 129.31, 128.45, 127.81, 124.29, 123.83, 21.88.

5-chloro-2-phenylisoindoline-1,3-dione (3h)52

1H NMR (500 MHz, (CD$_3$)$_2$SO) δ 8.05 (s, 1H), 8.00-7.94 (m, 2H), 7.56-7.52 (m, 2H), 7.46 (t, J = 7.1 Hz, 3H);

13C NMR (126 MHz, (CD$_3$)$_2$SO) δ 166.64, 166.28, 139.91, 134.92, 134.09, 132.19, 130.63, 129.37, 128.68, 127.80, 125.64, 123.96.

5-bromo-2-phenylisoindoline-1,3-dione (3i)52

1H NMR (500 MHz, (CD$_3$)$_2$SO) δ 8.18 (d, J = 1.2 Hz, 1H), 8.11 (dd, J = 7.9, 1.2 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.45 (t, J = 7.4 Hz, 3H);

13C NMR (126 MHz, (CD$_3$)$_2$SO) δ 166.83, 166.25, 137.85, 134.08, 132.18, 131.03, 129.37, 128.69, 128.66, 127.81, 126.76, 125.75.
4-chloro-2-phenylisoindoline-1,3-dione (3j)\(^{52}\)

\(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)SO) \(\delta\) 7.89 (dt, \(J = 22.3, 7.4\) Hz, 3H), 7.58-7.51 (m, 2H), 7.46 (dd, \(J = 7.3, 4.8\) Hz, 3H);

\(^{13}\)C NMR (126 MHz, (CD\(_3\))\(_2\)SO) \(\delta\) 166.17, 165.18, 136.53, 136.30, 134.43, 132.14, 130.25, 129.36, 128.74, 127.99, 127.76, 122.78.

1-(3-methoxyphenyl)pyrrolidine-2,5-dione (3k)\(^{53}\)

\(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)SO) \(\delta\) 7.39 (t, \(J = 8.3\) Hz, 1H), 7.03-6.95 (m, 1H), 6.83 (d, \(J = 7.3\) Hz, 2H), 3.75 (s, 3H), 2.76 (s, 4H);

\(^{13}\)C NMR (126 MHz, (CD\(_3\))\(_2\)SO) \(\delta\) 177.34, 159.90, 134.32, 130.06, 119.84, 114.19, 113.49, 55.76, 28.93.
NMR Spectra
References