Supplementary Information

Light-induced electron transfer/phase migration of a redox mediator for photocatalytic C–C coupling in a biphasic solution

Ren Itagaki,^a Shin-ya Takizawa,^b Ho-Chol Chang,^a* and Akinobu Nakada^{a,c}*

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

^bDepartment of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo,

3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

^cPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

*E-mail: chang@kc.chuo-u.ac.jp (H.C.), nakada@scl.kyoto-u.ac.jp (A.N.)

Table of Contents

p.3	Fig. S1 Cyclic voltammogram of Bn-Br in DCE
p.4	Fig. S2 Emission spectra of Ru or Ir with Bn-Br in DCE
p.5	Fig. S3 UV-vis absorption and emission spectra of Fc and Bn-Br, in DCE
p.6	Fig. S4 Emission decays of Ru and Ir in DCE
p.7	Fig. S5 HPLC chromatograms before and after photocatalysis
p.8	Fig. S6 UV-vis absorption spectra of $Fc^+PF_6^-$ and Fc^+Cl^- in an aqueous phase
p.9	Table S1 Photocatalytic activity of Bn-Br reduction in DCE solution
p.11	Fig. S7 ¹ H NMR spectra of Ru and Ir
p.12	Fig. S8 EDX spectra of $Fc^+PF_6^-$ before and after Cl^- ion exchange
p.13	Fig. S9 Photographs of H_2O/DCE (1:1) biphasic reaction solution
p.14	Fig. S10 HPLC chromatograms of Bn-Br, Fc, and Bn ₂

p.15 References

Fig. S1 Cyclic voltammograms of Bn-Br (red; 1 mM) and blank (black) in DCE containing NBu₄PF₆ (0.1 M) as the supporting electrolyte; scan rate: 0.005 V s^{-1} ; working electrode: glassy carbon; reference electrode: Ag/AgNO₃ (0.01 M); counter electrode: Pt wire.

Fig. S2 (a) Emission spectra of **Ru** (b) and **Ir** (c) in the presence of Bn-Br (0–3.0 mM) in DCE. The excitation wavelengths were 460 nm and 480 nm for **Ru** and **Ir**, respectively.

Fig. S3 (a) UV-vis absorption spectra of Fc (5 mM, black) and Bn-Br (50 mM, red), as well as (b) emission spectrum of Fc ($\lambda_{ex} = 460 \text{ nm}$) in DCE.

Fig. S4 Emission decay (a) at 620 nm from Ru (0.006 mM) and (b) at 590 nm from Ir (0.00025 mM) in DCE ($\lambda_{ex} = 440$ nm).

Fig. S5 HPLC chromatograms of DCE containing **Ru** (0.5 mM), Fc (5 mM), and Bn-Br (50 mM) (a,b) in the absence and (c,d) presence of aqueous phase before (black) and after (red) irradiation with visible light ($\lambda > 400$ nm) for 1 h; (b,d) show a magnification of the yellow highlighted area in (a,c), which corresponds to the peak for Bn₂. (e) Calibration curves of Bn₂ based on HPLC areas. For further characterization of each peak, see Fig. S10.

Fig. S6 UV-vis absorption spectra of the aqueous phase of a H_2O/DCE biphasic solution containing 7.5 μ mol of Fc⁺PF₆⁻ (black) and Fc⁺Cl⁻ (blue) measured after stirring for 10 min under a nitrogen atmosphere.

Entry	Photosensitizer	Sacrificial electron	Solvent	TOF/ h ⁻¹	Quantu	Ref
	T HOUSENSILLEI	donor	Solvent	(TON)	yield	
1	2+ N,, 1,, (CI-) ₂ N,, 1,, (CI-) ₂	BNAH ^a	MeCN	65.7 (164.3)	0.65^{b}	S 1
2		Hantzsch ester	DMF	24.0 (96.0)	_	S2
3 ^c	HN NHNH CI-EU ^{II} (CI-) ₂ HN NHNH	Zinc dust	МеОН	20.0 (120.0)	-	S3
4		$B_2Pin_2^d$	MeCN	7.9 (94.8)	_	S4
5 ^c	$\begin{array}{c c} Ph & Ph & 2+ \\ Ph & P & P \\ Ph & & & Ph \\ Au^{I} & Au^{I} & (CIO_{4}^{-})_{2} \\ Ph & Ph & Ph \\ Ph & Ph & Ph \end{array}$	NEt ₃	MeCN	7.2 (172)	-	S5
6	$H_{N \equiv r_{i}, r_{i} \in \mathbb{N}} \to PF_{6}^{-}$	DIPEA ^e	CD ₂ Cl ₂	4.1 (81.0)	_	S6
7	S CI	NEt ⁱ Pr ₂	'BuOH	1.4 (16.8)	_	S7
8	Ph Ne Ne Ph N Zriv N Ph Me Ph Ph Me	MeOBIH ^f	C_6D_6	1.1 (12.8)	0.0039	S8

Table S1 Photocatalytic activity of the Bn-Br reduction using various photosensitizers and sacrificial

 electron donors in single-phase organic solution.

Entry	Photosensitizer	Sacrificial electron donor	Solvent	TOF/ h ⁻¹ (TON)	Quantu m yield	Ref.
9 ^c	$\begin{array}{c c} Ph & Ph & 2+ \\ Ph & P & P \\ Ph & I & Ph \\ Au^{I} & Au^{I} & (CI^{-})_{2} \\ Ph & Ph & Ph \end{array}$	NEt ₃	CD ₃ OD/ CD ₃ CN (1:1)	1.0 (4.8)	_	S9
10	N Zr ^{iv} N Ph Me	BIH ^g	C ₆ D ₆	1.0 (2.0)	_	S10
11 ^c	(SiMe ₃) ₂ N—Ce ^{III} N(SiMe ₃) ₂ N—Ce ^{III} N(SiMe ₃) ₂	NaN(SiMe ₃) ₂	Et ₂ O	0.4 (19.0)	-	S11

^{*a*}1-benzyl-1,4-dihydronicotinamide. ^{*b*}Quantum efficiency for BNAH consumption; that of Bn₂ was not reported. ^{*c*}Photoreduction of benzyl chloride. ^{*d*}Bis(pinacolato)-diboron. ^{*e*}N,N-diisopropylethyamine. ^{*f*}1,3-dimethyl-2-phenyl-2,3-dihydro-1*H*-7-methoxybenzo[*d*]imidazole. ^{*g*}1,3-dimethyl-2-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole.

Fig. S7 ¹H NMR spectra of (a) **Ru** and (b) **Ir** (500 MHz, acetone- d_6). The symbols "‡", "#", "*", and "+" indicate signals that arise from residual protons of H₂O, acetone, Et₂O, and CH₂Cl₂, respectively; insets: enlarged aromatic region of the ¹H NMR spectra.

Fig. S8 Electron dispersion X-ray spectra of $Fc^+PF_6^-$ (a) before and (b) after treatment with the Cl⁻ ion-exchange resin.

Fig. S9 Photographs of a H₂O/DCE (1:1, ν/ν) biphasic solution containing Ir (0.5 mM), Fc (5.0 mM), and Bn-Br (50 mM) (a) before, (b) during, and (c) after stirring.

Fig. S10 HPLC chromatograms of DCE solutions containing (a) Bn-Br, (b) Fc, (c) Bn_2 , and (d) a mixture of Fc and Bn_2 .

References

- S1. K. Hironaka, S. Fukuzumi and T. Tanaka, J. Chem. Soc. Perkin Trans. 2, 1984, 1705-1709.
- S2. G. Park, S. Y. Yi, J. Jung, E. J. Cho and Y. You, *Chemistry*, 2016, 22, 17790-17799.
- S3. T. C. Jenks, M. D. Bailey, J. L. Hovey, S. Fernando, G. Basnayake, M. E. Cross, W. Li and M. J. Allen, *Chem. Sci.*, 2018, 9, 1273-1278.
- S4. D. Yu, W. P. To, G. S. M. Tong, L. L. Wu, K. T. Chan, L. Du, D. L. Phillips, Y. Liu and C. M. Che, *Chem. Sci.*, 2020, **11**, 6370-6382.
- S5. D. Li, C.-M. Che, H.-L. Kwong and V. W.-W. Yam, J. Chem. Soc., Dalton Trans., 1992, 3325-3329.
- S6. C. B. Larsen and O. S. Wenger, *Inorg. Chem.*, 2018, **57**, 2965-2968.
- S7. Y. Masuda, N. Ishida and M. Murakami, *Eur. J. Org. Chem.*, 2016, **2016**, 5822-5825.
- S8. Y. Zhang, T. S. Lee, J. L. Petersen and C. Milsmann, J. Am. Chem. Soc., 2018, 140, 5934-5947.
- S9. H. Tran, T. McCallum, M. Morin and L. Barriault, Org. Lett., 2016, 18, 4308-4311.
- S10. Y. Zhang, J. L. Petersen and C. Milsmann, *Organometallics*, 2018, **37**, 4488-4499.
- S11. H. Yin, P. J. Carroll, J. M. Anna and E. J. Schelter, J. Am. Chem. Soc., 2015, 137, 9234-9237.