Hydroxamate based transition metal-organic coordination polymers with semiconductive properties

Yong Yan,^a Ning-Ning Zhang,*^b Martin Börner,^a Berthold Kersting^a and Harald Krautscheid*^a

^b School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.

^a Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.

	Mn-ONDI-1	Mn-ONDI-2	CdCl-ONDI		
Empirical	$C_{14}H_8N_2O_8Mn$	$C_{14}H_6N_2O_7Mn\cdot H_2O$	$C_{14}H_4N_2O_6Cd_2Cl_2$		
formula					
Formula	387.16	387.16	591.89		
weight/g·mol ⁻¹					
Temperature/K	180	180	180		
Crystal system	triclinic	triclinic	monoclinic		
Space group	PĪ	$P\overline{1}$	<i>C2/c</i>		
<i>a</i> , Å	6.9888(2)	7.0493(3)	20.7322(13)		
<i>b</i> , Å	8.4994(3)	9.1088(4)	3.8637(2)		
<i>c</i> , Å	11.9404(4)	11.3580(4)	20.6366(14)		
α (deg)	70.725(2)	76.213(3)	90		
β (deg)	74.189(2)	80.550(3)	110.650(5)		
γ (deg)	70.343(2)	68.314(3)	90		
$V/Å^3$	620.01(4)	655.82(5)	1546.85(17)		
Ζ	2	2	4		
λ/Å	1.54186	1.54186	1.54186		
$D_{\text{calc}}(\text{g cm-3})$	2.074	1.961	2.542		
μ/mm^{-1}	9.239	8.735	25.577		
F(000)	390	390	1120		
Reflections	11574	12606	5479		
collected					
Independent	2314 ($R_{int} = 0.0482$)	2474 ($R_{int} = 0.0296$)	1455 ($R_{int} = 0.0343$)		
reflections					
Observed refl.	2150	2277	1229		
[I > 2σ(I)]					
Completeness	0.986(0=70.583)	$0.993 \ (\theta = 70.835)$	$0.986 \ (\theta = 70.358)$		
GOF	1.040	1.063	1.077		
R1 ^a , wR2 ^b [I >	0.0440, 0.1203	0.0320, 0.0883	0.0718, 0.1947		
2σ(I)]					
R_1^a , wR_2^b (all	0.0474, 0.1247	0.0356, 0.0924	0.0821, 0.2062		
data)					
CCDC number	2167220	2167221	2167222		
a) R1 = $\Sigma F_o - F_c / \Sigma F_o $; b) wR ₂ = $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$					

 Table S1 Single crystal structure data of Mn-ONDI-1, CdCl-ONDI, Mn-ONDI-2.

Item	C=O (coordinated)	C=O (free)
Mn-ONDI-1	1.245 (3) Å	1.210 (3) Å 1.224(4) Å 1.214(4) Å
CdCl-ONDI	1.19(2) Å 1.17(2) Å	N/A

Table S2 Bond lengths of carbonyl groups (C=O) in Mn-ONDI-1 and CdCl-ONDI.

Table S3 π - π interactions and interplanar distances, and electrical conductivity of H₂ONDI based coordination polymers.

Item	Shortest π - π interactions distance (centroid-centroid)	Interplanar distance	Electrical conductivity (pressed pellets)
H ₂ ONDI·DMA ⁸	3.607 Å	3.410 Å	2.26×10 ⁻⁷ S/m
$[Ca(ONDI)(H_2O)_2]_{\infty}^{8}$	3.179 Å	N/A	1.03×10 ⁻⁵ S/m
$[Sr(ONDI)(H_2O)_2]_{\infty}^{8}$	3.249 Å	N/A	2.21×10 ⁻⁵ S/m
$[Mn(ONDI)(H_2O)_2]_{\infty}$ (This work)	3.433 Å	3.267 Å	3.7×10 ⁻⁶ S/m
$[Cd_2Cl_2(ONDI)]_{\infty}$ (This work)	3.569 Å	3.487 Å	3.5×10 ⁻⁷ S/m

Fig. S1 Coordination modes of ONDI²⁻ in Mn-ONDI-1 (a), in Mn-ONDI-2 (b) and (c), in CdCl-ONDI (d).

Fig. S2 π - π interactions in Mn-ONDI-1; same colour as in Fig. 2; dashed lines represent equivalent centroid–centroid distances.

Fig. S3 Gradient isosurfaces (s = 0.5 a.u.) for a fragment of **Mn-ONDI-1**. The surfaces are colored on a bluegreen-red (BGR) scale according to values of sign $(\lambda_2)\rho$, ranging from -0.04 to 0.02 a.u.. Blue indicates strong attractive interactions, and red indicates strong non-bonded overlap.

Fig. S4 Gradient isosurfaces (s = 0.5 a.u.) for a fragment of **CdCl-ONDI**. The surfaces are colored on a bluegreen-red (BGR) scale according to values of sign $(\lambda_2)\rho$, ranging from -0.04 to 0.02 a.u.. Blue indicates strong attractive interactions, and red indicates strong non-bonded overlap.

Fig. S5 Temperature dependent magnetic susceptibility of Mn-ONDI-1.

Fig. S6 Tauc plots of Mn-ONDI-1 (a) and CdCl-ONDI (b).

Fig. S7 Band structure of Mn-ONDI-1 marked with dispersion width value.

Fig. S8 K-point path in Brillouin zone of Mn-ONDI-1 (Γ is denoted as G).

Fig. S9 Band structure of CdCl-ONDI marked with dispersion width value.

Fig. S10 K-point path in Brillouin zone of CdCl-ONDI (Γ is denoted as G).

Fig. S11 A prospective of the coordination chains arrangement of Mn-ONDI-1, view along the *a* axis.

Fig. S12 PXRD patterns of Mn-ONDI-1 (a) and CdCl-ONDI (b); λ (Cu-K_{α 1}) = 1.54060 Å.

Fig. S13 IR spectrum of Mn-ONDI-1.

Fig. S14 TG curve of Mn-ONDI-1. The weight loss of 9.33% at 150-200 °C corresponds to the loss of coordinated H_2O molecules (calculated weight loss 9.30%).

Fig. S15 IR spectrum of CdCl-ONDI.

Fig. S16 TG curve of CdCl-ONDI.

Fig. S17 PXRD patterns of **Mn-ONDI-1** (a) and **CdCl-ONDI** (b) after immersion in different solvents for 3 days. From their PXRD patterns, **Mn-ONDI-1** and **CdCl-ONDI** both exhibited high stability in common solvents, which could be assigned to strong metal-hydroxamate bonds.¹

Reference:

1. J. A. Chiong, J. Zhu, J. B. Bailey, M. Kalaj, R. H. Subramanian, W. Xu, S. M. Cohen and F. Akif Tezcan, J. Am. Chem. Soc., 2020, 142, 6907–6912.