Electronic Supplementary Information

Magnetic orientation behavior of L-type zeolite with rare-earth elements under low magnetic field

Tomomi Tabata, ^a Anna Nagai ^b and Motohide Matsuda ^{*b}

- ^{a.} Department of Materials Science and Engineering, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
 E-mail: mm_2008@alpha.msre.kumamoto-u.ac.jp (Motohide Matsuda)

Zeolite	Ion-exchange rate / %
Ce-L	19
Pr-L	20
Nd-L	21
Eu-L	25
Tb-L	22
Dy-L	22
Tm-L	22
Yb-L	20

Table S1 Ion-exchange rate of L-type zeolite ion-exchanged with various rare-earth ions.

Figure S1 XRD patterns of L-type zeolite ion-exchanged with various rare-earth ions.

	Components / mass%				
	0	Al	Si	К	Но
K-L	50.2	9.1	27.2	13.5	
Ho-L	50.3	8.9	26.1	9.7	5.0
K'-L	49.6	9.2	27.1	13.1	1.0

Table S2 Chemical compositions of K-L, Ho-L and K'-L powders.

Figure S2 Rietveld refinement patterns for the synchrotron X-ray powder diffraction data. Observed diffraction intensities are represented by +, and the calculated pattern by a solid line. Differences between the observed and calculated intensities are given at the bottom. Short vertical marks below the observed and calculated patterns indicate the positions of allowed Bragg reflections.

Atom	Site	g	X	У	Ζ	<i>U</i> (Ų)
K1	2c	0.886(5)	1/3	2/3	0	0.009(1)
К2	3f	0.982(4)	1/2	0	0	0.020(1)
КЗ	6k	0.694(3)	0.2990(2)	0	1/2	0.035(2)
К4	3g	0	1/2	0	1/2	0.013
К5	2d	0.002(5)	1/3	2/3	1/2	0.013
К6	1a	0.068(6)	0	0	0	0.013
AIT1	12p	3/4	0.0946(1)	0.3576(1)	0	0.009(1)
SiT1	12p	1/4	0.0946(1)	0.3576(1)	0	0.009(1)
SiT2	24r	1	0.1647(1)	0.4979(1)	0.2894(1)	0.012(0)
01	6j	1	0.2707(3)	0	0	0.009(2)
02	61	1	0.1642(2)	2 <i>x</i>	0	0.008(2)
03	120	1	0.2632(1)	2 <i>x</i>	0.2468(5)	0.006(1)
04	24r	1	0.1013(2)	0.4114(2)	0.1732(3)	0.016(1)
05	120	1	0.5753(1)	2 <i>x</i>	0.2294(5)	0.014(2)
06	12q	1	0.1450(2)	0.4763(2)	1/2	0.016(1)
Wat1	6k	0.391(6)	0.1655(14)	0	1/2	0.164(14)
Wat2	120	0.469(3)	0.1288(2)	2 <i>x</i>	0.4281(11)	0.062(5)
Wat3	120	0.544(2)	0.0691(3)	2 <i>x</i>	0.2447(15)	0.138(7)
Wat4	6j	0.696(4)	0.1211(6)	0	0	0.141(6)

Table S3 Refined atomic coordinates of K-L from Rietveld analysis. Final refinement indices were R_{wp} (weighted pattern *R*-factor) = 3.25%, R_e (expected *R*-factor) = 1.19%, R_p (pattern *R*-factor) = 2.16%, R_B (integrated intensity *R*-factor) = 2.36%, R_F (structure factor *R*-factor) = 1.03% and *S* (goodness-of-fit indicator) = 2.72.

Atom	Site	g	X	у	Ζ	<i>U</i> (Ų)
K1	2c	0.022(8)	1/3	2/3	0	0.012(92)
Ho1	2c	0.239(2)	1/3	2/3	0	0.017(2)
К2	3f	0.989(7)	1/2	0	0	0.011(2)
Ho2	3f	0	1/2	0	0	0.006
КЗ	6k	0.604(5)	0.2964(4)	0	1/2	0.047(3)
Ho3	6k	0	0.2964(4)	0	1/2	0.006
К4	3g	0	0.5	0	1/2	0.013
Ho4	3g	0.001(2)	0.5	0	1/2	0.006
К5	2d	0.007(7)	1/3	2/3	1/2	0.013
Ho5	2d	0.002(2)	1/3	2/3	1/2	0.006
К6	1a	0.007(9)	0	0	0	0.013
Ho6	1a	0.021(3)	0	0	0	0.006
AIT1	12p	3/4	0.0904(2)	0.3530(2)	0	0.013
SiT1	12p	1/4	0.0904(2)	0.3530(2)	0	0.013
SiT2	24r	1	0.1644(2)	0.4972(2)	0.2873(2)	0.006(1)
01	6j	1	0.2623(6)	0	0	0.003(3)
02	61	1	0.1628(3)	2 <i>x</i>	0	0.009(3)
03	120	1	0.2633(2)	2 <i>x</i>	0.2444(9)	0.011(2)
04	24r	1	0.1010(3)	0.4109(3)	0.1702(6)	0.017(2)
05	120	1	0.5747(2)	2 <i>x</i>	0.2191(9)	0.015(2)
06	12q	1	0.1434(5)	0.4725(4)	0.5	0.017(3)
Wat1	6k	0.877(7)	0.1224(7)	0	0.5	0.096(7)
Wat2	120	0.411(5)	0.1164(5)	2 <i>x</i>	0.4145(24)	0.066(9)
Wat3	120	0.555(3)	0.0568(4)	2 <i>x</i>	0.2305(25)	0.158(10)
Wat4	6j	0.679(4)	0.0331(8)	0	0	0.131(8)

Table S4 Refined atomic coordinates of Ho-L from Rietveld analysis. Final refinement indices were R_{wp} (weighted pattern *R*-factor) = 4.62%, R_e (expected *R*-factor) = 0.75%, R_p (pattern *R*-factor) = 2.91%, R_B (integrated intensity *R*-factor) = 3.92%, R_F (structure factor *R*-factor) = 1.02% and *S* (goodness-of-fit indicator) = 6.18.

Atom	Site	g	X	У	Ζ	<i>U</i> (Ų)
K1	2c	0.012(9)	1/3	2/3	0	0.006
Gd1	2c	0.296(3)	1/3	2/3	0	0.012(2)
К2	3f	1	1/2	0	0	0.008(2)
Gd2	3f	0.027(2)	1/2	0	0	0.006
КЗ	6k	0.603(6)	0.2950(5)	0	1/2	0.050(4)
Gd3	6k	0.001(2)	0.2950(5)	0	1/2	0.006
К4	3g	0	1/2	0	1/2	0.013
Gd4	3g	0	1/2	0	1/2	0.006
К5	2d	0	1/3	2/3	1/2	0.013
Gd5	2d	0	1/3	2/3	1/2	0.006
К6	1a	0	0	0	0	0.013
Gd6	1a	0.033(3)	0	0	0	0.006
AIT1	12p	3/4	0.0899(2)	0.3524(2)	0	0.004(1)
SiT1	12p	1/4	0.0899(2)	0.3524(2)	0	0.004(1)
SiT2	24r	1	0.1650(2)	0.4961(2)	0.2890(3)	0.007(6)
01	6j	1	0.2670(6)	0	0	0.013
02	61	1	0.1596(3)	2 <i>x</i>	0	0.003(3)
03	120	1	0.2629(2)	2 <i>x</i>	0.2396(11)	0.014(3)
04	24r	1	0.1013(3)	0.4122(3)	0.1713(6)	0.003(2)
05	120	1	0.5731(3)	2 <i>x</i>	0.2296(12)	0.013
06	12q	1	0.1453(5)	0.4745(4)	1/2	0.013
Wat1	6k	0.813(7)	0.0934(12)	0	1/2	0.427(23)
Wat2	120	0.442(6)	0.1016(6)	2 <i>x</i>	2.6184(24)	0.091(11)
Wat3	120	0.555(3)	0.0084(5)	2 <i>x</i>	0.0655(11)	0.046(4)
Wat4	6j	0.651(7)	0.1243(15)	0	0	0.296(22)

Table S5 Refined atomic coordinates of Gd-L from Rietveld analysis. Final refinement indices were R_{wp} (weighted pattern *R*-factor) = 4.79%, R_e (expected *R*-factor) = 0.75%, R_p (pattern *R*-factor) = 2.94%, R_B (integrated intensity *R*-factor) = 4.11%, R_F (structure factor *R*-factor) = 1.17% and *S* (goodness-of-fit indicator) = 6.36.

Atom	Site	g	X	У	Ζ	<i>U</i> (Ų)
K1	2c	0.026(8)	1/3	2/3	0	0.014(93)
Er1	2c	0.247(2)	1/3	2/3	0	0.018(2)
К2	3f	0.999(8)	1/2	0	0	0.010(2)
Er2	3f	0.003(2)	1/2	0	0	0.006
КЗ	6k	0.587(5)	0.2970(5)	0	1/2	0.057(4)
Er3	6k	0	0.2970(5)	0	1/2	0.006
К4	3g	0	1/2	0	1/2	0.013
Er4	3g	0.006(2)	1/2	0	1/2	0.006
К5	2d	0	1/3	2/3	1/2	0.013
Er5	2d	0.001(2)	1/3	2/3	1/2	0.006
К6	1a	0.018(10)	0	0	0	0.013
Er6	1a	0.014(3)	0	0	0	0.006
AIT1	12p	3/4	0.0897(2)	0.3525(2)	0	0.013
SiT1	12p	1/4	0.0897(2)	0.3525(2)	0	0.013
SiT2	24r	1	0.1640(2)	0.4970(2)	0.2867(2)	0.005(1)
01	6j	1	0.2617(6)	0	0	0.002(3)
02	61	1	0.1615(4)	2 <i>x</i>	0	0.016(3)
03	120	1	0.2629(2)	2 <i>x</i>	0.2379(10)	0.007(3)
04	24r	1	0.1009(3)	0.4108(3)	0.1692(6)	0.012(2)
05	120	1	0.5751(2)	2 <i>x</i>	0.2183(11)	0.022(3)
06	12q	1	0.1412(5)	0.4708(4)	1/2	0.018(3)
Wat1	6k	0.882(7)	0.1296(8)	0	1/2	0.099(8)
Wat2	120	0.409(5)	0.1137(6)	2 <i>x</i>	1.4125(9)	0.098(12)
Wat3	120	0.592(3)	0.0496(4)	2 <i>x</i>	0.2867(22)	0.167(10)
Wat4	6j	0.710(5)	0.0376(7)	0	0	0.114(8)

Table S6 Refined atomic coordinates of Er-L from Rietveld analysis. Final refinement indices were R_{wp} (weighted pattern *R*-factor) = 4.07%, R_e (expected *R*-factor) = 0.75%, R_p (pattern *R*-factor) = 2.48%, R_B (integrated intensity *R*-factor) = 4.03%, R_F (structure factor *R*-factor) = 1.06% and *S* (goodness-of-fit indicator) = 5.42.

Figure S3 *M*-*H* curves of L-type zeolite ion-exchanged with various rare-earth ions.

Figure S4 *M*-*T* curves of L-type zeolite ion-exchanged with various rare-earth ions.

Figure S5 XRD patterns of powder-compacted films prepared with a 0.9 T magnetic field applied horizontally to the substrate surface for (a) Ho-L, (b) Gd-L and (c) Er-L, respectively.

Table S7 Interplanar angles, ϕ , between each lattice plane giving the characteristic peaks in powder XRD pattern and the (00/) planes estimated using the following equation given for a hexagonal cell ^{S1}:

$h_1h_2 + k_1k_2 + \frac{1}{2}(h_1k_2 + h_2k_1) + \frac{3}{4}(\frac{a}{c})^2 l_1l_2$						
$\cos\phi = \frac{1}{\sqrt{\left(h_1^2 + k_1^2 + h_1k_1 + \frac{3}{4}\left(\frac{a}{c}\right)^2 l_1^2\right)\left(h_2^2 + k_2^2 + h_2k_2 + \frac{3}{4}\left(\frac{a}{c}\right)^2 l_2^2\right)}}$						
	h k l	φ/°				
	100	90				
	001	0				
	210	90				
	111	39.26				
	220	90				
	310	90				
	301	54.77				
	221	58.55				
	002	0				
	311	59.56				
	102	13.28				
	112	22.23				
	202	25.26				
	321	64.07				
	500	90				
	302	35.29				
	222	39.26				
	600	90				
	003	0				
	441	72.99				
	004	0				

S1 B. D. Cullity, Element of X-ray Diffraction, second ed., Addison-Wseley Publishing Company, 1978 (Appendix C-3).

Figure S6 XRD patterns of Ho-compacted films with preferential orientation of the *c*-axis (a) before and (b) after reverse ion-exchange from Ho^{3+} to K^+ .

Figure S7 XRD patterns of the top of Ln (Ln = Ce, Pr, Nd, Eu, Tb, Dy, Tm and Yb)-compacted films prepared with a magnetic field (a) vertically and (b) horizontally applied to the substrate surface in the slip casting.

Figure S8 Surface SEM images for powder-compacted films of (a) random orientation, (b) the *c*-axis orientation and (c) the *ab*-plane orientation. The symbol of Sc in the SEM images indicates the direction of slip casting. Two photographs (d) and (e) are for the sample with the SEM image (b) in which the powder-compacted film is on a support substrate composed of an yttria-stabilized zirconia.